Effect of organic fertilizers on soil organic carbon and risk trace elements content in soil under permanent grassland

https://doi.org/10.17221/5/2015-SWRCitation:Karabcová H., Pospíšilová L., Fiala K., Škarpa P., Bjelková M. (2015): Effect of organic fertilizers on soil organic carbon and risk trace elements content in soil under permanent grassland. Soil & Water Res., 10: 228-235.
download PDF
The effect of different kinds of organic matter inputs on elemental composition, content, and quality of humic substances was studied on permanent grassland during 2008–2013. The experiment included two organic fertilizer types – compost and slurry, both with the range of stocking rates 0.9, 1.4, and 2.0 livestock units (LU)/ha (corresponding to 54, 84, and 120 kg N/ha, respectively), and control without any fertilizer. The soil was sandy-loam, of Cambisol type, with semi natural permanent grassland. Labile forms and total contents of selected trace elements (Co, Cu, Zn, Cd) and macroelements (Ca, Mg, K, P, and N) were measured. Soil organic matter parameters such as total organic carbon (Cox), humic substances (HS), humic acid (HA), fluvic acid (FA), and labile carbon forms (hot-water extractable carbon (Chws), cold water extractable carbon (Ccws)) were determined. Results showed that the greatest content of P, Ca, Mg, and N in the soil was detected by the CO 2.0 treatment. Furthermore, the positive effect of compost on Cox, Chws, HA, FA, HS, N and macronutrients was observed. The elemental analysis of humic acids showed lower carbon content and higher oxygen content in HA molecule, which indicated young humic acids, with a lower condensation degree. The content and quality of humic substances strongly influenced the total and labile trace elements content in the soil. Additionally, hot water soluble carbon significantly correlated with plant available forms of Zn, Cu, and Cd.
Aeschbacher M.S., Schwarzenbach R.P. (2010): Novel electrochemical approach to assess the redox properties of humic acids. Environmental Science & Technology, 47: 87–93.
Bidar Géraldine, Pruvot Christelle, Garçon Guillaume, Verdin Anthony, Shirali Pirouz, Douay Francis (2009): Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environmental Science and Pollution Research, 16, 42-53  https://doi.org/10.1007/s11356-008-0021-4
Debosz Kasia, Vognsen Lene, Labouriau Rodrigo (2002): Carbohydrates in hot water extracts of soil aggregates as influenced by long-term management. Communications in Soil Science and Plant Analysis, 33, 623-634  https://doi.org/10.1081/CSS-120002768
Degens Bradley, Sparling Graham (1996): Changes in aggregation do not correspond with changes in labile organic C fractions in soil amended with 14C-glucose. Soil Biology and Biochemistry, 28, 453-462  https://doi.org/10.1016/0038-0717(96)00014-4
Dercová K., Sejáková Z., Skokanová M., Barančíková G., Makovníková J. (2007): Bioremediation of soil contamined with pentachlorophenol (PCP) using humic acids bound on zeolite, Chemosphere, 66: 783–790.
Dvořák M. (2013): Why we identify term “humus” with “soil organic matter” in pedology, if it directs us to wrong deductions? [Diploma Thesis.] České Budějovice, University of South Bohemia in České Budějovice, Faculty of Agriculture. (in Czech)
Edwards J. H., Wood C. W., Thurlow D. L., Ruf M. E. (1992): Tillage and Crop Rotation Effects on Fertility Status of a Hapludult Soil. Soil Science Society of America Journal, 56, 1577-  https://doi.org/10.2136/sssaj1992.03615995005600050040x
Fiala K., Krhovjáková J. (2009): Methodology and Principles of Assessment of Chemical Parameters of Soils under Permanent Grassland. Agrovýzkum Rapotín. (in Czech)
Ghani A, Dexter M, Perrott K.W (2003): Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry, 35, 1231-1243  https://doi.org/10.1016/S0038-0717(03)00186-X
Gondar Dora, Iglesias Ana, López Rocio, Fiol Sarah, Antelo Juan M., Arce Florencio (2006): Copper binding by peat fulvic and humic acids extracted from two horizons of an ombrotrophic peat bog. Chemosphere, 63, 82-88  https://doi.org/10.1016/j.chemosphere.2005.07.003
Hanč A., Tlustoš P., Szaková J., Balík J. (2008): The influence of organic fertilizers applicationon phosphorus and potassium bioavailability. Plant, Soil and Environment, 54: 247–254.
Hayes M.H.B. (1985):Extraction of humic substances from soil. In: Aiken G.R., Wershaw R.L., McKnight D.M., McCarthy P. (eds): Humic substances in soil, sediments and water. New York, John Wiley: 329–362.
Hayes Michael H.B., Clapp C. Edward (2001): HUMIC SUBSTANCES: CONSIDERATIONS OF COMPOSITIONS, ASPECTS OF STRUCTURE, AND ENVIRONMENTAL INFLUENCES. Soil Science, 166, 723-737  https://doi.org/10.1097/00010694-200111000-00002
Haynes R (): Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and Biochemistry, 32, 211-219  https://doi.org/10.1016/S0038-0717(99)00148-0
Hejcman Michal, Szaková Jiřina, Schellberg Jürgen, Tlustoš Pavel (2010): The Rengen Grassland Experiment: relationship between soil and biomass chemical properties, amount of elements applied, and their uptake. Plant and Soil, 333, 163-179  https://doi.org/10.1007/s11104-010-0332-3
Janzen H. H., Campbell C. A., Brandt S. A., Lafond G. P., Townley-Smith L. (1992): Light-Fraction Organic Matter in Soils from Long-Term Crop Rotations. Soil Science Society of America Journal, 56, 1799-  https://doi.org/10.2136/sssaj1992.03615995005600060025x
Kabata-Pendias Alina (2004): Soil–plant transfer of trace elements—an environmental issue. Geoderma, 122, 143-149  https://doi.org/10.1016/j.geoderma.2004.01.004
Kolář L., Klimeš F., Ledvina R., Kužel S. (2003): A method to determine mineralization kinetics of a decomposable part of soil organic matter in the soil. Plant, Soil and Environment, 49: 8–11.
Kolář L., Kužel S., Horáček J., Čechová V., Borová-Batt J., Peterka J. (2009): Labile fractions of soil organic matter, their quantity and quality. Plant, Soil and Environment, 55: 245–251.
Koo Bon-Jun, Chen Weiping, Chang Andrew C., Page Albert L., Granato Thomas C., Dowdy Robert H. (2010): A root exudates based approach to assess the long-term phytoavailability of metals in biosolids-amended soils. Environmental Pollution, 158, 2582-2588  https://doi.org/10.1016/j.envpol.2010.05.018
Körschens M. (1998): Soil organic matter and sustainable land use. Advances in Geoecology. 31: 423–430.
Körschens M., Schultz E., Behm R. (1990): Hot water extractable carbon and nitrogen of soils as criteria of their ability for N-release. Zentralblatt für Mikrobiologie, 145: 30‒311.
Leinweber P., Schulten H. -R., K�rschens M. (1995): Hot water extracted organic matter: chemical composition and temporal variations in a long-term field experiment. Biology and Fertility of Soils, 20, 17-23  https://doi.org/10.1007/BF00307836
Monreal Carlos M., Sultan Yasir, Schnitzer Morris (2010): Soil organic matter in nano-scale structures of a cultivated Black Chernozem. Geoderma, 159, 237-242  https://doi.org/10.1016/j.geoderma.2010.07.017
Monteith Donald T., Stoddard John L., Evans Christopher D., de Wit Heleen A., Forsius Martin, Høgåsen Tore, Wilander Anders, Skjelkvåle Brit Lisa, Jeffries Dean S., Vuorenmaa Jussi, Keller Bill, Kopácek Jiri, Vesely Josef (2007): Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537-540  https://doi.org/10.1038/nature06316
Nelson D.W., Sommers L.E. (1982): Methods of Soil Analysis. Part 2. Madison, ASA, SSSA Publications: 539–579.
Němeček J. et al. (2001): Taxonomic Classification System of Soils of the Czech Republic. ČZU Praha. (in Czech)
Padmavathiamma Prabha K., Li Loretta Y. (2010): Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments. Bioresource Technology, 101, 5667-5676  https://doi.org/10.1016/j.biortech.2010.01.149
Palmer Noel E., Freudenthal John H., von Wandruszka Ray (2006): Reduction of Arsenates by Humic Materials. Environmental Chemistry, 3, 131-  https://doi.org/10.1071/EN05081
Podlešáková E., Němeček J., Sirový V., Lhotský J., Macurová H., Ivánek O., Bumerl M., Hudcová O., Voplakal K., Hálová, G., Blahovec F. (1992): Analyzes of Soil, Water and Plants. VÚMOP, Praha.
Pospíšilová L., Škarpa P., Konečná M. (2011): Different carbon fractions in soils and their relationship with trace elements content. Journal of Life Science, 5: 316–321.
Rook J.J. (1974): Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 23: 234–243
Senesi N., Loffredo E. (2005): Metal ion complexation by soilhumicsubstances. In: Tabatabai M.A., Sparks D.L. (eds): Chemical Processes in Soils. Madison, SSA: 563-617.
Šestauberová Martina, Novák František (): Comparison of extractable soil carbon and dissolved organic carbon by their molecular characteristics. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59, 337-342  https://doi.org/10.11118/actaun201159060337
StatSoft (1997): Statistica for Windows. Tulsa, StatSoft.
TerBraak C.J.F., Šmilauer P. (2002): CANOCO Reference Manual and CanoDrawfor Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Ithaca, Microcomputer Power.
Theng B. K. G., Yuan G. (2008): Nanoparticles in the Soil Environment. Elements, 4, 395-399  https://doi.org/10.2113/gselements.4.6.395
Tlustoš P., Száková J., Šichorová K., Pavlíková D., Balík J. (2007): Risk of the metals in soils in agroecosystems in the Czech Republic. Prague, VÚRV. Available at http://www.phytosanitary.org/projekty/2007/VVF_08_2007.pdf (accessed June 2014). (in Czech)
Uchida Yoshitaka, Nishimura Seiichi, Akiyama Hiroko (2012): The relationship of water-soluble carbon and hot-water-soluble carbon with soil respiration in agricultural fields. Agriculture, Ecosystems & Environment, 156, 116-122  https://doi.org/10.1016/j.agee.2012.05.012
Váchalová R., Kolář L., Kobes M., Váchal J. (2013): The effect of grassland management practises on differentiation of soil organic matter fractions. Advanced Crop Science, 3: 472–478.
Zsolnay Ádám (2003): Dissolved organic matter: artefacts, definitions, and functions. Geoderma, 113, 187-209  https://doi.org/10.1016/S0016-7061(02)00361-0
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti