Effect of temperature and soil pH on the sorption of ibuprofen in agricultural soil

https://doi.org/10.17221/6/2016-SWRCitation:Hiller E., Šebesta M. (2017): Effect of temperature and soil pH on the sorption of ibuprofen in agricultural soil. Soil & Water Res., 12: 78-85.
download PDF
Besides many natural factors, soil pH and temperature can have significant effects on the sorption of pharmaceuticals in soils. This is the first study, which aimed to evaluate the effect of soil pH and temperature on the sorption of ibuprofen in soil. Sorption–desorption experiments at 20°C indicated weak retention of ibuprofen in the soil. Sorption of ibuprofen in the soil was affected by both temperature and pH with the latter showing much greater effect. The extent of ibuprofen sorption increased with decreasing pH mainly due to the change of ibuprofen speciation from negatively charged ions at high pH to the neutral form at low pH. At pH 4, the distribution coefficient Kd was 1.30 l/kg, whereas at pH 8, it was only 0.42 l/kg. When temperature increased, the sorption of ibuprofen decreased, showing that its sorption was exothermic.
References:
Antunes Márjore, Esteves Valdemar I., Guégan Régis, Crespo Janaina S., Fernandes Andreia N., Giovanela Marcelo (2012): Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chemical Engineering Journal, 192, 114-121  https://doi.org/10.1016/j.cej.2012.03.062
 
Babić Sandra, Horvat Alka J.M., Mutavdžić Pavlović Dragana, Kaštelan-Macan Marija (2007): Determination of pKa values of active pharmaceutical ingredients. TrAC Trends in Analytical Chemistry, 26, 1043-1061  https://doi.org/10.1016/j.trac.2007.09.004
 
Behera S. K., Oh S. Y., Park H. S. (2012): Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. International Journal of Environmental Science and Technology, 9, 85-94  https://doi.org/10.1007/s13762-011-0020-8
 
Biggar J. W., Cheung M. W. (1973): Adsorption of Picloram (4-Amino-3,5,6-Trichloropicolinic Acid) on Panoche, Ephrata, and Palouse Soils: A Thermodynamic Approach to the Adsorption Mechanism1. Soil Science Society of America Journal, 37, 863-  https://doi.org/10.2136/sssaj1973.03615995003700060022x
 
Carmona Eric, Andreu Vicente, Picó Yolanda (2014): Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Science of The Total Environment, 484, 53-63  https://doi.org/10.1016/j.scitotenv.2014.02.085
 
Chiou C.T. (2002): Partition and Adsorption of Organic Contaminants in Environmental Systems. Hoboken, John Wiley & Sons, Inc.
 
Durán–Álvarez Juan C., Prado Blanca, Ferroud Anouck, Juayerk Narcedalia, Jiménez-Cisneros Blanca (2014): Sorption, desorption and displacement of ibuprofen, estrone, and 17β estradiol in wastewater irrigated and rainfed agricultural soils. Science of The Total Environment, 473-474, 189-198  https://doi.org/10.1016/j.scitotenv.2013.12.018
 
Estevez Esmeralda, Hernandez-Moreno Jose Manuel, Fernandez-Vera Juan Ramon, Palacios-Diaz Maria Pino (2014): Ibuprofen adsorption in four agricultural volcanic soils. Science of The Total Environment, 468-469, 406-414  https://doi.org/10.1016/j.scitotenv.2013.07.068
 
FENT K, WESTON A, CAMINADA D (2006): Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122-159  https://doi.org/10.1016/j.aquatox.2005.09.009
 
González-Naranjo V., Boltes K., Biel M. (2013): Mobility of ibuprofen, a persistent active drug, in soils irrigated with reclaimed water. Plant, Soil and Environment, 59: 68–73.
 
Jackson M.L. (1958): Soil Chemical Analysis. Englewood Cliffs, Prentice-Hall, Inc.
 
Karnjanapiboonwong Adcharee, Chase Darcy A., Cañas Jaclyn E., Jackson William A., Maul Jonathan D., Morse Audra N., Anderson Todd A. (2011): Uptake of 17α-ethynylestradiol and triclosan in pinto bean, Phaseolus vulgaris. Ecotoxicology and Environmental Safety, 74, 1336-1342  https://doi.org/10.1016/j.ecoenv.2011.03.013
 
Kerns Edward H., Di Li, Petusky Susan, Kleintop Teresa, Huryn Donna, McConnell Oliver, Carter Guy (2003): Pharmaceutical profiling method for lipophilicity and integrity using liquid chromatography–mass spectrometry. Journal of Chromatography B, 791, 381-388  https://doi.org/10.1016/S1570-0232(03)00250-2
 
Kodešová Radka, Grabic Roman, Kočárek Martin, Klement Aleš, Golovko Oksana, Fér Miroslav, Nikodem Antonín, Jakšík Ondřej (2015): Pharmaceuticals' sorptions relative to properties of thirteen different soils. Science of The Total Environment, 511, 435-443  https://doi.org/10.1016/j.scitotenv.2014.12.088
 
Koskinen W. C., Cheng H. H. (1983): Effects of Experimental Variables on 2,4,5-T Adsorption-Desorption in Soil1. Journal of Environment Quality, 12, 325-  https://doi.org/10.2134/jeq1983.00472425001200030006x
 
Kosmulski Marek (2009): pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of Colloid and Interface Science, 337, 439-448  https://doi.org/10.1016/j.jcis.2009.04.072
 
Lin Kunde, Gan Jay (2011): Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere, 83, 240-246  https://doi.org/10.1016/j.chemosphere.2010.12.083
 
Maszkowska Joanna, Wagil Marta, Mioduszewska Katarzyna, Kumirska Jolanta, Stepnowski Piotr, Białk-Bielińska Anna (2014): Thermodynamic studies for adsorption of ionizable pharmaceuticals onto soil. Chemosphere, 111, 568-574  https://doi.org/10.1016/j.chemosphere.2014.05.005
 
Mestre A.S., Pires J., Nogueira J.M.F., Carvalho A.P. (2007): Activated carbons for the adsorption of ibuprofen. Carbon, 45, 1979-1988  https://doi.org/10.1016/j.carbon.2007.06.005
 
Monteiro S.C., Boxall A.B.A. (2010): Occurrence and fate of human pharmaceuticals in the environment. Reviews of Environmental Contamination and Toxicology, 202: 53–154.
 
Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon and organic matter. In: Sparks D.L., Bartels J.M. (eds): Methods of Soil Analysis: Part 3 Chemical Methods. 3rd Ed. SSSA Book Series No. 5, Madison, SSSA: 961–1010.
 
Nordstrom D.K., Munoz J.L. (1994): Geochemical Thermodynamics. 2nd Ed. Boston, Blackwell Scientific Publications, Inc.
 
OPPEL J, BROLL G, LOFFLER D, MELLER M, ROMBKE J, TERNES T (2004): Leaching behaviour of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. Science of The Total Environment, 328, 265-273  https://doi.org/10.1016/j.scitotenv.2004.02.004
 
Pokladníková H., Rožnovský J., Středa T. (2008): Evaluation of soil temperatures at agroclimatological station Pohořelice. Soil and Water Research, 3: 223–230.
 
Revitt D. Michael, Balogh Tamas, Jones Huw (2015): Sorption behaviours and transport potentials for selected pharmaceuticals and triclosan in two sterilised soils. Journal of Soils and Sediments, 15, 594-606  https://doi.org/10.1007/s11368-014-1025-y
 
Schaffer Mario, Licha Tobias (2015): A framework for assessing the retardation of organic molecules in groundwater: Implications of the species distribution for the sorption-influenced transport. Science of The Total Environment, 524-525, 187-194  https://doi.org/10.1016/j.scitotenv.2015.04.006
 
Schaffer Mario, Boxberger Norman, Börnick Hilmar, Licha Tobias, Worch Eckhard (2012): Sorption influenced transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different pH. Chemosphere, 87, 513-520  https://doi.org/10.1016/j.chemosphere.2011.12.053
 
SIMS JAMES R., HABY VINCENT A. (1971): SIMPLIFIED COLORIMETRIC DETERMINATION OF SOIL ORGANIC MATTER. Soil Science, 112, 137-141  https://doi.org/10.1097/00010694-197108000-00007
 
Verlicchi P., Al Aukidy M., Zambello E. (2012): Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Science of The Total Environment, 429, 123-155  https://doi.org/10.1016/j.scitotenv.2012.04.028
 
Vulava Vijay M., Cory Wendy C., Murphey Virginia L., Ulmer Candice Z. (2016): Sorption, photodegradation, and chemical transformation of naproxen and ibuprofen in soils and water. Science of The Total Environment, 565, 1063-1070  https://doi.org/10.1016/j.scitotenv.2016.05.132
 
Xu J., Wu L., Chang A.C. (2009a): Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77: 1299–1305.
 
Xu J., Chen W., Wu L., Green R., Chang A.C. (2009b): Leachability of some emerging contaminants in reclaimed municipal wastewater-irrigated turf grass fields. Environmental Toxicology and Chemistry, 28: 1842–1850.
 
Yalkowsky S.H., He Y. (2003): Handbook of Aqueous Solubility Data. Boca Raton, CRC Press LLC.
 
Yamamoto Hiroshi, Nakamura Yudai, Moriguchi Shigemi, Nakamura Yuki, Honda Yuta, Tamura Ikumi, Hirata Yoshiko, Hayashi Akihide, Sekizawa Jun (2009): Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43, 351-362  https://doi.org/10.1016/j.watres.2008.10.039
 
download PDF

© 2019 Czech Academy of Agricultural Sciences