Irrigation quotas influenced the characteristics of the preferential flow in cotton fields under mulched drip irrigation in Northwest China

https://doi.org/10.17221/74/2021-SWRCitation:

Chen R., Wang Z.H., Wang T.Y., Wu X.D. (2022): Irrigation quotas influenced the characteristics of the preferential flow in cotton fields under mulched drip irrigation in Northwest China. Soil & Water Res., 17: 170–179.

download PDF

Preferential flow is associated with potential issues of poor irrigation water-fertiliser efficiency in a cultivated field. In addition, a preliminary understanding of how irrigation quotas contribute to this prevalent phenomenon is limited. Thus, one blank control group and three different irrigation quotas were set (0, 450, 550 and 650 mm) and the dye tracing image method was applied to investigate the characteristics of the preferential flow in cotton fields under mulched drip irrigation. On the basis of the results, we found significant differences in the preferential flow degree between the four groups (P = 0.02); the mean scores of the dyed area ratio Dc and variation coefficient Cv from the soil stained profile were 29.83%, 45.77%, 37.36%, 39.40% and 0.98, 1.12, 1.28, 1.17 for the total irrigation quota 0, 450, 550 and 650 mm, respectively, indicating an increasing and then decreasing tendency for the non-uniformity as well as variation in the soil water flowing as the irrigation quota being put on. At the same time, the preferential flow ratios showed a similar trend compared with Dc as well as Cv, which were 4.64%, 13.70%, 40.03%, and 23.60% for the irrigation amounts of 0, 450, 550, and 650 mm, respectively. In general, we concluded that the degree of preferential flow with an irrigation quota of 550 mm (local irrigation practice) was highest while no irrigation led to a more uniform flow in the cotton fields with film mulched. The present study goes some way towards supplementing our understanding of preferential flow in agricultural practice.

References:
Ahmed H.Y., Hiroshi Y., Ronny B. (2015): Modeling solute transport by DLA in soils of Northeastern Egypt. PLoS ONE, 10: e0119943.
 
Alaoui A. (2015): Modelling susceptibility of grassland soil to macropore flow. Journal of Hydrology, 525: 536–546. https://doi.org/10.1016/j.jhydrol.2015.04.016
 
Baveye P., Boast C.W., Ogawa S., Parlange J.Y. (1998): Influence of image resolution and thresholding on the apparent mass fractal characteristics of preferential flow patterns in field soils. Water Resources Research, 34: 2783–2796. https://doi.org/10.1029/98WR01209
 
Beven K., Germann P. (1982): Macropores and water flow in soils. Water Resources Research, 18: 1311–1325. https://doi.org/10.1029/WR018i005p01311
 
Bruggeman A.C. (1997): Preferential movement of solutes through soils. [Ph.D. Thesis.] Blacksburg, Faculty of the Virginia Polytechnic Institute and State University.
 
Cheng J.H., Kan X.Q., Hou F. (2020): Response of preferential soil flow to different infiltration rates and vegetation types in the Karst region of southwest China. Water, 178: 120–131.
 
Danierhan S., Shalamu A., Tumaerbai H., Guan D.H. (2013): Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China. Journal of Arid Land, 5: 51–59. https://doi.org/10.1007/s40333-013-0141-7
 
Flury M., Flühler H., Jury W.A., Leuenberger J. (1994): Susceptibility of soils to preferential flow of water: A field study. Water Resources Research, 30: 1945–1954. https://doi.org/10.1029/94WR00871
 
Forrer I., Papritz A., Kasteel R., Flühler H. (2010): Quantifying dye tracers in soil profiles by image processing. European Journal of Soil Science, 51: 313–322. https://doi.org/10.1046/j.1365-2389.2000.00315.x
 
Forsmann D.M., Kjaergaard C. (2014): Phosphorus release from anaerobic peat soils during convective discharge – Effect of soil Fe: P molar ratio and preferential flow. Geoderma, 223: 21–32. https://doi.org/10.1016/j.geoderma.2014.01.025
 
Jarvis N.J. (2007): A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58: 523–546. https://doi.org/10.1111/j.1365-2389.2007.00915.x
 
Jaynes D.B., Ahmed S.I., Kung K.J.S., Kanwar R.S. (2001): Temporal dynamics of preferential flow to a subsurface drain. Canadian Journal of Soil Science, 65: 559–566. https://doi.org/10.2136/sssaj2001.6551368x
 
Karlberg L., Rockstr M.J., Annandale J.G., Steyn J.M. (2007): Low-cost drip irrigation – A suitable technology for southern Africa?: An example with tomatoes using saline irrigation water. Agricultural Water Management, 89: 59–70. https://doi.org/10.1016/j.agwat.2006.12.011
 
Liu E.K., He W.Q., Yan C.R. (2014): ‘White revolution’ to ‘white pollution’ – Agricultural plastic film mulch in China. Environmental Research Letters, 9: 091001. https://doi.org/10.1088/1748-9326/9/9/091001
 
Luxmoore R.J. (1981): Micro-, meso-, and macroporosity of soil. Soil Science Society of America Journal, 45: 671–672. https://doi.org/10.2136/sssaj1981.03615995004500030051x
 
Morris C., Mooney S.J., Young S.D. (2008): Sorption and desorption characteristics of the dye tracer, Brilliant Blue FCF, in sandy and clay soils. Geoderma, 146: 434–438. https://doi.org/10.1016/j.geoderma.2008.06.021
 
Niu J.Z., Yu X.X., Zhang J.Q. (2006): The present and future research on preferential flow. Acta Ecologica Sinica, 26: 231–243. (in Chinese)
 
Peel M.C., Finlayson B.L., McMahon T.A. (2007): Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11: 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
 
Romic D., Romic M. (2003): Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation. Agricultural Water Management, 60: 87–97. https://doi.org/10.1016/S0378-3774(02)00168-3
 
Sheng F. (2012): Study on preferential soil water flow using Iodine-Starch staining method. Soils, 44: 144–148. (in Chinese)
 
Stone W.W., Wilson J.T. (2006): Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport. Journal of Environmental Quality, 35: 1825–1835. https://doi.org/10.2134/jeq2006.0068
 
Vidon P., Cuadra P.E. (2010): Impact of precipitation characteristics on soil hydrology in tile-drained landscapes. Hydrological Processes, 24: 1821–1833. https://doi.org/10.1002/hyp.7627
 
Wang B.Y., Cheng J.H. (2012): Macropores properties of agricultural land at Changping District in Beijing. Journal of Soil and Water Conservation, 26: 189–193. (in Chinese)
 
Wang F.X., Feng S.Y., Hou X.Y., Kang S.Z., Han J.J. (2009): Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Research, 110: 123–129. https://doi.org/10.1016/j.fcr.2008.07.014
 
Wu Q.H., Liu C.L., Lin W.J., Zhang M., Wang G.L., Zhang F.W. (2014): Quantifying the preferential flow by dye tracer in the North China Plain. Journal of Earth Science, 26: 435–444.
 
Yao J.J., Cheng J.H. (2017): Effect of antecedent soil water on preferential flow in four soybean plots in Southwestern China. Soil Science, 182: 83–93. https://doi.org/10.1097/SS.0000000000000198
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti