Modelling the impact of acid deposition on forest soils in North Bohemian Mountains with two dynamic models: the Very Simple Dynamic Model (VSD) and the Model of Acidification of Groundwater in Catchments (MAGIC)

https://doi.org/10.17221/76/2014-SWRCitation:Vašát R., Pavlů L., Borůvka L., Tejnecký V., Nikodem A. (2015): Modelling the impact of acid deposition on forest soils in North Bohemian Mountains with two dynamic models: the Very Simple Dynamic Model (VSD) and the Model of Acidification of Groundwater in Catchments (MAGIC). Soil & Water Res., 10: 10-18.
download PDF
Enormous acid deposition that culminated in the 1970s contributed largely to accelerate the process of acidification of soils in northern Bohemia. As a consequence a wide forest decline occurred shortly afterwards. In this paper we present a long-term soil acidification modelling with two dynamic models (Model of Acidification of Groundwater in Catchments and Very Simple Dynamic Model) to describe history, make successive prediction, and assess possibility of recovery of the ecosystem. Focused on eight soil acidification indicators we found a strong rise of the soil acidification status in 1970s, when emission load culminated, and a large decrease after the year 2000 (after flue gas desulfurization). We further revealed slight differences, but general similarity, for both dynamic models. The results indicate that the impact of historic massive pollution will not probably be eliminated in the future by the year 2100.
References:
Ahonen J., Rankinen K., Holmberg M., Syri S., Forsius M. (1998): Application of the SMART2 model to a forested catchment in Finland: comparison to the SMART model and effects of emission reduction scenarios. Boreal Environmental Research, 3: 221–223.
 
Akselsson Cecilia, Ardö Jonas, Sverdrup Harald (2004): Critical Loads of Acidity for Forest Soils and Relationship to Forest Decline in the Northern Czech Republic. Environmental Monitoring and Assessment, 98, 363-379  https://doi.org/10.1023/B:EMAS.0000038196.53204.ab
 
Ardö J., Lambert N., Henzlik V., Rock B.N. (1997): Satellite-based estimations of coniferous forest cover changes: Krusne Hory, Czech Republic 1972–1989. Ambio, 26: 158–166.
 
Borůvka Luboš, Nikodem Antonín, Drábek Ondřej, Vokurková Petra, Tejnecký Václav, Pavlů Lenka (2009): Assessment of soil aluminium pools along three mountainous elevation gradients. Journal of Inorganic Biochemistry, 103, 1449-1458  https://doi.org/10.1016/j.jinorgbio.2009.07.022
 
Černý T., Pačes T. (eds.) (1995): Acidification in the Black Triangle Region. In: Acid Rains 95 – 5th Int. Conf. Acid Deposition Science and Policy in Gothenburg. Excursion Guide. Prague, Czech Geological Survey.
 
Cosby B.J. (2001): MAGIC: Model of Acidification of Groundwater in Catchments, Version 7.77. Oslo, NIVA.
 
Cosby B.J., Hornberger G.M., Galloway J.N., Wright R.F. (1985a): Modelling the effects of acid deposition: assessment of a lumped parameter model of soil water and stream water chemistry. Water Resources Research, 21: 51–63.
 
Cosby B.J., Wright R.F., Hornberger G.M., Galloway J.N. (1985b): Modelling the effects of acid deposition: estimation of long-term water quality responses in a small forested catchment. Water Resources Research, 21: 1591–1601.
 
Cosby B. J., Hornberger G. M., Wright R. F., Galloway J. N. (1986): Modeling the Effects of Acid Deposition: Control of Long-Term Sulfate Dynamics by Soil Sulfate Adsorption. Water Resources Research, 22, 1283-1291  https://doi.org/10.1029/WR022i008p01283
 
Cosby B.J., Hornberger G.M., Wright R.F. (1989): Estimating time delays and extent of regional de-acidification in southern Norway in response to several deposition scenarios. In: Kamari J., Brakke D.F., Jenkins A., Norton S.A., Wright R.F. (eds): Regional Acidification Models – Geographic Extent and Time Development. New York, Springer: 151–166.
 
Cosby B. J., Ferrier R. C., Jenkins A., Wright R. F. (2001): Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499-518  https://doi.org/10.5194/hess-5-499-2001
 
De Vries W., Posch M. (2003): Critical levels and critical loads as a tool for air quality management. In: Hewitt C.N., Jackson A.V. (eds): Handbook of Atmospheric Science. Principles and Applications. Oxford, Blackwell Science: 562–602.
 
De Vries W., Posch M., Kämäri J. (1989): Simulation of the long-term soil response to acid deposition in various buffer ranges. Water, Air, and Soil Pollution, 48, 349-390  https://doi.org/10.1007/BF00283336
 
Evans C. D., Jenkins A., Helliwell R. C., Ferrier R. (1998): Predicting regional recovery from acidification; the MAGIC model applied to Scotland, England and Wales. Hydrology and Earth System Sciences, 2, 543-554  https://doi.org/10.5194/hess-2-543-1998
 
FAO (2007): World Reference Base for Soil Resources. Rome, FAO.
 
Ferrier R.C., Jenkins A., Cosby B.J., Helliwell R.C., Wright R.F., Bulger A.J. (1995): Efects of future N deposition scenarios on the Galloway region of SW Scotland using a coupled sulphur and nitrogen model (Magic-Wand). In: Grennfelt P., Rodhe H., Thornelof E., Wisniewski J. (eds): Proc. 5th Int. Conf. Acidic Deposition: Science and Policy, Goteborg, Sweden, June 26–30, 1995. Water, Air, and Soil Pollution, 85: 707–712.
 
Forsius M., Alveteg M., Jenkins A., Johansson M., Kleemola S., Lükewille A., Posch M., Sverdrup H., Walse C. (1998): Magic, safe and smart model applications at integrated monitoring sites: effects of emission reduction scenarios. Water, Air, and Soil Pollution, 105: 21–30.
 
Hinderer M., Einsele G. (1997): Groundwater acidification in Triassic sandstones: prediction with MAGIC modelling. Geologische Rundschau, 86, 372-388  https://doi.org/10.1007/s005310050147
 
Hornberger G. M., Cosby B. J., Galloway J. N. (1986): Modeling the Effects of Acid Deposition: Uncertainty and Spatial Variability in Estimation of Long-Term Sulfate Dynamics in a Region. Water Resources Research, 22, 1293-1302  https://doi.org/10.1029/WR022i008p01293
 
Hruška J., Ciencala E. (eds) (2003): Long-term acidification and nutrient degradation of forest soils – limiting factors forestry today. Prague, Ministry of Environment of the Czech Republic.
 
Hruška J., Krám P. (2003): Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic). Hydrology and Earth System Sciences, 7, 525-539  https://doi.org/10.5194/hess-7-525-2003
 
Jenkins A., Cosby B.J. (1989): Modelling surface water acidification using one and two layers and simple flow routing. In: Kamari J., Brakke D.F., Jenkins A., Norton S.A., Wright R.F. (eds): Regional Acidification Models – Geographic Extent and Time Development. New York, Springer: 253–266.
 
Kopáček Jiří, Veselý Josef (2005): Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmospheric Environment, 39, 2179-2188  https://doi.org/10.1016/j.atmosenv.2005.01.002
 
Krám P., Bishop K.H. (2001): Overview of the MAGIC model applications in 1985–2000. In: Detecting Environmental Change: Science and Society. London, University College: 20–21.
 
Lepistö A., Whitehead P.G., Neal C., Cosby B.J. (1988): Modelling the effects of acid deposition: Estimation of long-term water quality responses in forested catchments in Finland. Nordic Hydrology, 19: 99–120.
 
MALEK S, MARTINSON L, SVERDRUP H (2005): Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the “SAFE” model. Environmental Pollution, 137, 568-573  https://doi.org/10.1016/j.envpol.2005.01.041
 
Mládková L., Borůvka L., Drábek O. (2004): Distribution of aluminium among its mobilizable forms in soils of the Jizera mountains region. Plant, Soil and Environment, 50: 346–351.
 
Nikodem Antonín, Kodešová Radka, Bubeníčková Libuše (2013): Simulation of the influence of rainfall redistribution in spruce and beech forest on the leaching of Al and SO4 2- from forest soils. Journal of Hydrology and Hydromechanics, 61, -  https://doi.org/10.2478/johh-2013-0006
 
Posch M., De Vries W. (1999): Derivation of critical loads by steady-state and dynamic soil models. In: Langan S.J. (ed.): The Impact of Nitrogen Deposition on Natural and Semi-natural Ecosystems. Dordrecht, Kluwer: 213–234.
 
Posch Maximilian, Reinds Gert Jan (2009): A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environmental Modelling & Software, 24, 329-340  https://doi.org/10.1016/j.envsoft.2008.09.007
 
Posch M., Hettelingh J.P., Slootweg J. (eds) (2003): Manual for Dynamic Modelling of Soil Response to Atmospheric Deposition. Bilthoven, RIVM.
 
Reinds Gert Jan, Posch Maximilian, Leemans Rik (2009): Modelling recovery from soil acidification in European forests under climate change. Science of The Total Environment, 407, 5663-5673  https://doi.org/10.1016/j.scitotenv.2009.07.013
 
Reynolds B. (1997): Predicting soil acidification trends at Plynlimon using the SAFE model. Hydrology and Earth System Sciences, 1, 717-728  https://doi.org/10.5194/hess-1-717-1997
 
Sverdrup Harald, De Vries Wim (1994): Calculating critical loads for acidity with the simple mass balance method. Water, Air, and Soil Pollution, 72, 143-162  https://doi.org/10.1007/BF01257121
 
Tejnecký Václav, Drábek Ondřej, Borůvka Luboš, Nikodem Antonín, Kopáč Jan, Vokurková Petra, Šebek Ondřej (2010): Seasonal variation of water extractable aluminium forms in acidified forest organic soils under different vegetation cover. Biogeochemistry, 101, 151-163  https://doi.org/10.1007/s10533-010-9450-5
 
Tejnecký Václav, Bradová Monika, Borůvka Luboš, Němeček Karel, Šebek Ondřej, Nikodem Antonín, Zenáhlíková Jitka, Rejzek Jan, Drábek Ondřej (2013): Profile distribution and temporal changes of sulphate and nitrate contents and related soil properties under beech and spruce forests. Science of The Total Environment, 442, 165-171  https://doi.org/10.1016/j.scitotenv.2012.10.053
 
UBA (2004): Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads Levels and Air Pollution Effects, Risks and Trends. UNECE Convention on Long Range Transboundary Air Pollution. Berlin, Federal Environmental Agency.
 
Warfvinge Per, Falkengren-Grerup Ursula, Sverdrup Harald, Andersen Bent (1993): Modelling long-term cation supply in acidified forest stands. Environmental Pollution, 80, 209-221  https://doi.org/10.1016/0269-7491(93)90041-L
 
download PDF

© 2020 Czech Academy of Agricultural Sciences