Possibilities of remediation of neutral mine drainage – Removal and recovery of potentially hazardous elements

https://doi.org/10.17221/7/2022-SWRCitation:

Prepilková V., Poništ J., Schwarz M., Samešová D. (2022): Possibilities of remediation of neutral mine drainage – Removal and recovery of potentially hazardous elements. Soil & Water Res., 17: 251–267.

download PDF

Mine water is one of the factors threatening the environment. The aim of the review article is to discuss and critically evaluate individual strategies for the remediation of neutral mine water. A critical evaluation is an essential tool to determine an appropriate remediation strategy. A wetland system is the preferred method of metal removal. However, the disadvantage is that it takes up more space compared to other methods and has a lower metal removal efficiency compared to active metal removal methods. When creating a suitable strategy, it is also necessary to assess the conditions of the mining site, which partially or completely prevent the use of the selected remediation strategy. The benefit of this review article is the processing of suitable combinations of treatment methods for the removal of potentially hazardous elements and their subsequent recovery. Future research in the field needs to focus on the analysis of the negative aspects of the environment that may disrupt or support the implementation of the selected method of remediation.

References:
Abdullah N., Yusof N., Lau W.J., Jaafar J., Ismail A.F. (2019): Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76: 17–38.  https://doi.org/10.1016/j.jiec.2019.03.029
 
Ahalya N., Ramachandra T.V. (2003): Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7: 71–79.
 
Akcil A., Koldas S. (2006): Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14: 1139–1145.  https://doi.org/10.1016/j.jclepro.2004.09.006
 
Aldor I., Fourest E., Volesky B. (1995): Desorption of cadmium from algal biosorbent. The Canadian Journal of Chemical Engineering, 73: 516–522.  https://doi.org/10.1002/cjce.5450730412
 
Amorim W.B., Hayashi A.M., Pimentel P.F., Silva M.G.C. (2003): A study of the process of desorption of hexavalent chromium. Brazilian Journal of Chemical Engineering, 20: 283–289.  https://doi.org/10.1590/S0104-66322003000300008
 
Arana Juve J.M., Christensen F.M.S., Wang Y., Wei Z. (2022): Electrodialysis for metal removal and recovery: A review. Chemical Engineering Journal, 435: 1–20.  https://doi.org/10.1016/j.cej.2022.134857
 
Aryal M., Ziagova M., Liakopoulou-Kyriakides M. (2010): Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chemical Engineering Journal, 162: 178–185.  https://doi.org/10.1016/j.cej.2010.05.026
 
Ávila C., Bayona J.M., Martín I., Salas J.J., García J. (2015): Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecological Engineering, 80: 108–116. https://doi.org/10.1016/j.ecoleng.2014.07.056
 
Ayoub G.M., Mehawej M. (2007): Adsorption of arsenate on untreated dolomite powder. Journal of Hazardous Materials, 148: 259–266.  https://doi.org/10.1016/j.jhazmat.2007.02.011
 
Bailey S.E., Olin T.J., Bricka R.M., Adrian D.D. (1999): A review of potentially low-cost sorbents for heavy metals. Water Research, 33: 2469–2479.  https://doi.org/10.1016/S0043-1354(98)00475-8
 
Bakatula E.N., Richard D., Neculita C.M., Zagury G.J. (2018): Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research, 25: 7823–7833.  https://doi.org/10.1007/s11356-017-1115-7
 
Balintova M., Singovszka E., Holub M. (2012): Qualitative characterization of sediment from the Smolnik creek influenced by acid mine drainage. Procedia Engineering, 42: 1520–1526.  https://doi.org/10.1016/j.proeng.2012.07.545
 
Banks D., Parnachev V.P., Frengstad B., Holden W., Vedernikov A.A., Karnachuk O.V. (2002): Alkaline mine drainage from metal sulphide and coal mines: examples from Svalbard and Siberia. Geological Society of London, 198: 287–296.  https://doi.org/10.1144/GSL.SP.2002.198.01.19
 
Barrera H., Ureña-Núñez F., Bilyeu B., Barrera-Díaz C. (2006): Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia. Journal of Hazardous Materials, 136: 846–853.  https://doi.org/10.1016/j.jhazmat.2006.01.021
 
Batty L., Lesley B., Hooley D., Daniel H., Younger P., Paul Y. (2008): Iron and manganese removal in wetland treatment systems: rates, processes and implications for management. Science of the Total Environment, 394: 1–8.  https://doi.org/10.1016/j.scitotenv.2008.01.002
 
Ben Ali H.E., Neculita C.M., Molson J.W., Maqsoud A., Zagury G.J. (2019): Performance of passive systems for mine drainage treatment at low temperature and high salinity: A review. Minerals Engineering, 134: 325–344.  https://doi.org/10.1016/j.mineng.2019.02.010
 
Benning L.G., Waychunas G.A. (2008): Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls. Chapter 7. In: Brantley S.L., Kubicki J.D., White A.F. (eds.): Kinetics of Water-Rock Interaction. Springer: 259–333.
 
Bhattacharyya K.G., Gupta S.S. (2008): Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140: 114–131.  https://doi.org/10.1016/j.cis.2007.12.008
 
Boddu V.M., Abburi K., Talbott J.L., Smith E.D., Haasch R. (2008): Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Research, 42: 633–642.  https://doi.org/10.1016/j.watres.2007.08.014
 
Božić D., Gorgievski M., Stanković V., Štrbac N., Šerbula S., Petrović N. (2013): Adsorption of heavy metal ions by beech sawdust – Kinetics, mechanism and equilibrium of the process. Ecological Engineering, 58: 202–206.  https://doi.org/10.1016/j.ecoleng.2013.06.033
 
Braungardt C., Achterberg E., Elbaz-Poulichet F., Morley N. (2003): Metal geochemistry in a mine-polluted estuarine system in Spain. Applied Geochemistry, 18: 1757–1771.  https://doi.org/10.1016/S0883-2927(03)00079-9
 
Calugaru I.L., Neculita C.M., Genty T., Bussière B., Potvin R. (2016): Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. Journal of Hazardous Materials, 310: 48–55.  https://doi.org/10.1016/j.jhazmat.2016.01.069
 
Calugaru I.L., Neculita C.M., Genty T., Zagury G.J. (2018): Metals and metalloids treatment in contaminated neutral effluents using modified materials. Journal of Environmental Management: 212, 142–159.  https://doi.org/10.1016/j.jenvman.2018.02.002
 
Calugaru I.L., Neculita C.M., Genty T., Zagury G.J. (2019): Removal efficiency of As(V) and Sb(III) in contaminated neutral drainage by Fe-loaded biochar. Environmental Science and Pollution Research, 26: 9322–9332.  https://doi.org/10.1007/s11356-019-04381-1
 
Calugaru I.L., Neculita C.M., Genty T., Zagury G.J. (2020): Removal and recovery of Ni and Zn from contaminated neutral drainage by thermally activated dolomite and hydrothermally activated wood ash. Water, Air, & Soil Pollution, 231: 226.
 
Calugaru I.L., Genty T., Neculita C.M. (2021): Treatment of manganese, in the presence or absence of iron, in acid and neutral mine drainage using raw vs half-calcined dolomite. Minerals Engineering, 160: 106666.  https://doi.org/10.1016/j.mineng.2020.106666
 
Carvalho P.C.S., Neiva A.M.R., Silva M.M.V.G., Santos A.C.T. (2017): Human health risks in an old gold mining area with circum-neutral drainage, central Portugal. Environmental Geochemistry and Health, 39: 43–62.  https://doi.org/10.1007/s10653-016-9806-4
 
Chatterjee A., Abraham J. (2019): Desorption of heavy metals from metal loaded sorbents and e-wastes: A review. Biotechnology Letters, 41: 319–333.  https://doi.org/10.1007/s10529-019-02650-0
 
Chen B., Zhou F.J., Yang F., Lian J.J., Ye T.R., Wu H.Y., Wang L.M., Song N., Liu Y.Y., Hui A.Y. (2022): Enhanced sequestration of molybdenum(VI) using composite constructed wetlands and responses of microbial communities. Water Science and Technology, 85: 1065–1078.  https://doi.org/10.2166/wst.2022.035
 
Dinardo O., Skaff M., MacKinnon D.J., Kondos P.D., McCready R.G.L., Riveros P.A. (1991): Study on Metals Recovery/Recycling from Acid Mine Drainage. Canada Centre for Mineral and Energy Technology: 1–66.
 
Driehaus W., Jekel M., Hildebrandt U. (2009): Granular ferric hydroxide-a new adsorbent for the removal of arsenic from natural water. Journal of Water Supply: Research and Technology– AQUA, 47: 30–35 https://doi.org/10.2166/aqua.1998.0005
 
Duker A.A., Carranza E.J.M., Hale M. (2005): Arsenic geochemistry and health. Environment International, 31: 631–641.  https://doi.org/10.1016/j.envint.2004.10.020
 
Dvorak D.H., Hedin R.S., Edenborn H.M., McIntire P.E. (1992): Treatment of metal-contaminated water using bacterial sulfate reduction: Results from pilot-scale reactors. Biotechnology and Bioengineering, 40: 609–616.  https://doi.org/10.1002/bit.260400508
 
Dzombak D.A., François M., Morel M. (1991): Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley: 30–35.
 
El-Sherif I.Y., Tolani S., Ofosu K., Mohamed O.A., Wanekaya A.K. (2013): Polymeric nanofibers for the removal of Cr(III) from tannery waste water. Journal of Environmental Management, 129: 410–413. https://doi.org/10.1016/j.jenvman.2013.08.004
 
Esmaeili A., Mobini M., Eslami H. (2019): Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies. Applied Water Science, 9: 97.  https://doi.org/10.1007/s13201-019-0977-x
 
Etteieb S., Zolfaghari M., Magdouli S., Brar K.K., Brar S.K. (2021): Performance of constructed wetland for selenium, nutrient and heavy metals removal from mine effluents. Chemosphere, 281: 2–8.  https://doi.org/10.1016/j.chemosphere.2021.130921
 
Frau F., Atzori R., Ardau C., Medas D., Podda F., Dore E., Idini A., Tempesta G., Agrosì G. (2020): A two-step pH control method to remove divalent metals from near-neutral mining and metallurgical waste drainages by inducing the formation of layered double hydroxide. Journal of Environmental Management, 271: 2–11. https://doi.org/10.1016/j.jenvman.2020.111043
 
Fuller C.C., Harvey J.W. (2000): Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. Environmental Science & Technology, 34: 1150–1155.
 
Geen A., Robertson A.P., Leckie J.O. (1994): Complexation of carbonate species at the goethite surface: Implications for adsorption of metal ions in natural waters. Geochimica et Cosmochimica Acta, 58: 2073–2086.  https://doi.org/10.1016/0016-7037(94)90286-0
 
Ghosh A., Sáez A.E., Ela W. (2006): Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals. Science of the Total Environment, 363: 46–59.  https://doi.org/10.1016/j.scitotenv.2005.06.018
 
Gibert O., de Pablo J., Cortina J.L., Ayora C. (2005): Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage. Water Research, 39: 2827–2838.  https://doi.org/10.1016/j.watres.2005.04.056
 
Hedin R.S., Nairn W.R., Kleinmann R.L.P. (1994): Passive treatment of coal mine drainage. Bureau of Mines, 44: 1–44.
 
Heikkinen P.M., Räisänen M.L., Johnson R.H. (2009): Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage. Mine Water and the Environment, 28: 30–49.  https://doi.org/10.1007/s10230-008-0056-2
 
Hill R.D. (1968): Mine Drainage Treatment: State of the Art and Research Needs. Cincinnati, US Department of the Interior, Mine Drainage Control Activities, Federal Water Pollution Control Administration.
 
Huang W., Hu M., Qin X., Zhou W., Lv W., Dong B. (2017): Fouling of extracellular algal organic matter during ultrafiltration: The influence of iron and the fouling mechanism. Algal Research, 25: 252–262.  https://doi.org/10.1016/j.algal.2017.05.002
 
Ipeaiyeda A.R., Tesi G.O. (2014): Sorption and desorption studies on toxic metals from brewery effluent using eggshell as adsorbent. Advances in Natural Science, 7: 15–24.
 
Ivanets A.I., Kitikova N.V., Shashkova I.L., Oleksiienko O.V., Levchuk I., Sillanpää M. (2016): Using of phosphatized dolomite for treatment of real mine water from metal ions. Journal of Water Process Engineering, 9: 246–253.  https://doi.org/10.1016/j.jwpe.2016.01.005
 
Jamil T.S., Mansor E.S., Abdallah H., Shaban A.M., Souaya E.R. (2018): Novel anti fouling mixed matrix CeO2/Ce7O12 nanofiltration membranes for heavy metal uptake. Journal of Environmental Chemical Engineering, 6: 3273–3282.  https://doi.org/10.1016/j.jece.2018.05.006
 
Jang M., Chen W., Cannon F.S. (2008): Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environmental Science & Technology, 42: 3369–3374.
 
Javanbakht V., Ghoreishi S.M., Habibi N., Javanbakht M. (2016): A novel magnetic chitosan/clinoptilolite/magnetite nanocomposite for highly efficient removal of Pb(II) ions from aqueous solution. Powder Technology, 302: 372–383.  https://doi.org/10.1016/j.powtec.2016.08.069
 
Jia L., Liu H., Kong Q., Li M., Wu S., Wu H. (2020): Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water Research, 169: 1–35. https://doi.org/10.1016/j.watres.2019.115285
 
Jiao X., Zhang L., Qiu Y., Yuan Y. (2017): A new adsorbent of Pb(II) ions from aqueous solution synthesized by mechanochemical preparation of sulfonated expanded graphite. RSC Advances, 7: 38350–38359.  https://doi.org/10.1039/C7RA05864K
 
Jin W., Zhang Y. (2020): Sustainable electrochemical extraction of metal resources from waste streams: From removal to recovery. ACS Sustainable Chemistry and Engineering, 8: 4693–4707.  https://doi.org/10.1021/acssuschemeng.9b07007
 
Johnson D.B., Hallberg K.B. (2005): Acid mine drainage remediation options: A review. Science of the Total Environment, 338: 3–14.  https://doi.org/10.1016/j.scitotenv.2004.09.002
 
Johnson K.L., Younger P.L. (2005): Rapid manganese removal from mine waters using an aerated packed-bed bioreactor. Bioremediation and Biodegradation, 34: 987–993.  https://doi.org/10.2134/jeq2004.0300
 
Jones S.N., Cetin B. (2017): Evaluation of waste materials for acid mine drainage remediation. Fuel, 188: 294–309.  https://doi.org/10.1016/j.fuel.2016.10.018
 
Junta J.L., Hochella M.F. (1994): Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study. Geochimica et Cosmochimica Acta, 58: 4985–4999.  https://doi.org/10.1016/0016-7037(94)90226-7
 
Kamala C.T., Chu K.H., Chary N.S., Pandey P.K., Ramesh S.L., Sastry A.R.K., Sekhar K.C. (2005): Removal of arsenic(III) from aqueous solutions using fresh and immobilized plant biomass. Water Research, 39: 2815–2826.  https://doi.org/10.1016/j.watres.2005.04.059
 
Kamaruzaman S., Fikrah A.N.I., Yahaya N., Hong L.S., Raznisyafiq Razak M. (2017): Removal of Cu (II) and Cd (II) ions from environmental water samples by using cellulose acetate membrane. Journal of Environmental Analytical Chemistry, 4: 1–8. https://doi.org/10.4172/2380-2391.1000220
 
Kang M., Kawasaki M., Tamada S., Kamei T., Magara Y. (2000): Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination, 131: 293–298.  https://doi.org/10.1016/S0011-9164(00)90027-4
 
Kay J.T., Conklin M.H., Fuller C.C., O’Day P.A. (2001): Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe Mining District, Arizona. Environmental Science & Technology, 35: 4719–4725.
 
Kocaoba S. (2007): Comparison of Amberlite IR 120 and dolomite’s performances for removal of heavy metals. Journal of Hazardous Materials, 147: 488–496.  https://doi.org/10.1016/j.jhazmat.2007.01.037
 
Kołodyńska D., Krukowska J., Thomas P. (2017): Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chemical Engineering Journal, 307: 353–363.  https://doi.org/10.1016/j.cej.2016.08.088
 
Krishnani K.K., Ayyappan S. (2006): Heavy metals remediation of water using plants and lignocellulosic agrowastes. Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, 188: 59–84.
 
Kurniawan T.A., Chan G.Y.S., Lo W.H., Babel S. (2006): Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118: 83–98.  https://doi.org/10.1016/j.cej.2006.01.015
 
Kuyucak N., Volesky B. (1989): Desorption of cobalt-laden algal biosorbent. Biotechnology and Bioengineering, 33: 815–822.  https://doi.org/10.1002/bit.260330704
 
Lata S., Singh P.K., Samadder S.R. (2015): Regeneration of adsorbents and recovery of heavy metals: A review. International Journal of Environmental Science and Technology, 12: 1461–1478.  https://doi.org/10.1007/s13762-014-0714-9
 
Lee G., Bigham J.M., Faure G. (2002): Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Applied Geochemistry, 17: 569–581.  https://doi.org/10.1016/S0883-2927(01)00125-1
 
Lee G., Cui M., Yoon Y., Khim J., Jang M. (2018): Passive treatment of arsenic and heavy metals contaminated circumneutral mine drainage using granular polyurethane impregnated by coal mine drainage sludge. Journal of Cleaner Production, 186: 282–292.  https://doi.org/10.1016/j.jclepro.2018.03.156
 
Lewis A.E. (2010): Review of metal sulphide precipitation. Hydrometallurgy, 104: 222–234.  https://doi.org/10.1016/j.hydromet.2010.06.010
 
Li Q., Chai L., Zhao J., Yang Z., Wang Q. (2009): Lead desorption from modified spent grain. Transactions of Nonferrous Metals Society of China, 19: 1371–1376.  https://doi.org/10.1016/S1003-6326(08)60452-5
 
Liščák P., Bajtoš P., Mašlár E., Mašlárová I., Vasilenková A., Siska M., Repková R. (2019): Vplyv ťažby nerastov na životné prostredie, Správa za rok 2018. Spišská Nová Ves, Štátny geologický ústav Dionýza Štúra.
 
Maqsoud A., Neculita C.M., Bussière B., Benzaazoua M., Dionne J. (2016): Impact of fresh tailing deposition on the evolution of groundwater hydrogeochemistry at the abandoned Manitou mine site, Quebec, Canada. Environmental Science and Pollution Research, 23: 9054–9072.  https://doi.org/10.1007/s11356-016-6111-9
 
Means B.P., Rose A. (2005): Rate of manganese removal in limestone bed systems. In: National Meeting of the American Society of Mining and Reclamation, 702–716. https://doi.org/10.21000/JASMR05010702
 
Miretzky P., Cirelli A.F. (2010): Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials, 180: 1–19.  https://doi.org/10.1016/j.jhazmat.2010.04.060
 
Mittal A., Shukla S. (2019): Remediation technologies – A comparative study. Materials Science Forum, 969: 697–702. https://doi.org/10.4028/www.scientific.net/MSF.969.697
 
Mudzielwana R., Gitari M.W., Ndungu P. (2020): Enhanced As(III) and As(V) adsorption from aqueous solution by a clay based hybrid sorbent. Frontiers in Chemistry, 7: 1–10. https://doi.org/10.3389/fchem.2019.00913
 
Nekhunguni P.M., Tavengwa N.T., Tutu H. (2017): Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite. Journal of Environmental Management, 197: 550–558.  https://doi.org/10.1016/j.jenvman.2017.04.038
 
Nemati M., Hosseini S.M., Shabanian M. (2017): Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. Journal of Hazardous Materials, 337: 90–104. https://doi.org/10.1016/j.jhazmat.2017.04.074
 
Nguyen T.T., Soda S., Kanayama A., Hamai T. (2021): Effects of cattails and hydraulic loading on heavy metal removal from closed mine drainage by pilot-scale constructed wetlands. Water, 13: 1–15. https://doi.org/10.3390/w13141937
 
Nishiyama S., Saito K., Saito K., Sugita K., Sato K., Akiba M., Saito T., Tsuneda S., Hirata A., Tamada M., Sugo T. (2003): High-speed recovery of antimony using chelating porous hollow-fiber membrane. Journal of Membrane Science, 214: 275–281.  https://doi.org/10.1016/S0376-7388(02)00558-6
 
Nordstrom D.K., Alpers C.N., Ptacek C.J., Blowes D.W. (2000): Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science & Technology, 34: 254–258.
 
Novotny V. (1995). Diffuse sources of pollution by toxic metals and impact on receiving waters. In: Förstner U., Salomons W., Mader P. (eds.): Heavy Metals. Environmental Science. Berlin, Heidelberg, Springer: 33–52.
 
Nuttall C., Younger P.L. (2000): Zinc removal from hard, circum-neutral mine waters using a novel closed-bed limestone reactor. Water Research, 34: 1262–1268. https://doi.org/10.1016/S0043-1354(99)00252-3
 
Oh C., Yu C., Cheong Y., Yim G., Song H., Hong J., Ji S. (2015): Efficiency assessment of cascade aerator in a passive treatment system for Fe(II) oxidation in ferruginous mine drainage of net al.aline. Environmental Earth Sciences, 73: 5363–5373. https://doi.org/10.1007/s12665-014-3791-7
 
Opitz J., Timms W. (2016): Mine water discharge quality – A review of classification frameworks. In: Drebenstedt C., Paul M. (eds.): Proc. IMWA 2016: Mining Meets Water – Conflicts and Solutions, Leipzig, July 11–15, 2016: 17–26.
 
Pearce N.J.G., Hartley S., Perkins W.T., Dinelli E., Edyvean R.G.J., Priestman G., Bachmann R., Sandlands L. (2007): Dealginated seaweed for the bioremediation of mine waters in mid-wales: Results of field trials from the “bioman” eu life environment project 5. In: Water in Mining Environments, Cagliari, May 27–31, 2007: 1–5.
 
Pehlivan E., Özkan A.M., Dinç S., Parlayici Ş. (2009): Adsorption of Cu2+ and Pb2+ ion on dolomite powder. Journal of Hazardous Materials, 167: 1044–1049. https://doi.org/10.1016/j.jhazmat.2009.01.096
 
Peng F.F., Di P. (1994): Removal of arsenic from aqueous solution by adsorbing colloid flotation. Industrial & Engineering Chemistry Research, 33: 922–928.
 
Pinto P.X., Al-Abed S.R., Reisman D.J. (2011): Biosorption of heavy metals from mining influenced water onto chitin products. Chemical Engineering Journal, 166: 1002–1009. https://doi.org/10.1016/j.cej.2010.11.091
 
Qasem N.A.A., Mohammed R.H., Lawal D.U. (2021): Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4: 36.  https://doi.org/10.1038/s41545-021-00127-0
 
Qu D., Wang J., Hou D., Luan Z., Fan B., Zhao C. (2009): Experimental study of arsenic removal by direct contact membrane distillation. Journal of Hazardous Materials, 163: 874–879. https://doi.org/10.1016/j.jhazmat.2008.07.042
 
Rahmati N.O., Pourafshari C.M., Azizi N.H. (2017): Removal of free active chlorine from synthetic wastewater by MEUF process using polyethersulfone/titania nanocomposite membrane. Separation and Purification Technology, 181: 213–222. https://doi.org/10.1016/j.seppur.2017.03.030
 
Ren Z. (2013): The principle and applications of bioelectrochemical systems. In: Gupta V., Tuoby M. (eds.):Biofuel Technologies. Berlin, Heidelberg, Springer: 501–527.
 
Richard D., Mucci A., Neculita C.M., Zagury G.J. (2020a): Comparison of organic materials for the passive treatment of synthetic neutral mine drainage contaminated by nickel: Adsorption and desorption kinetics and isotherms. Water, Air, and Soil Pollution, 231: 556–556.  https://doi.org/10.1007/s11270-020-04917-z
 
Richard D., Mucci A., Neculita C.M., Zagury G.J. (2020b): Comparison of organic materials for the passive treatment of synthetic neutral mine drainage contaminated by nickel: Short- and medium-term batch experiments. Applied Geochemistry, 123: 104772. https://doi.org/10.1016/j.apgeochem.2020.104772
 
Rodríguez C., Tapia C., Leiva-Aravena E., Leiva E. (2020): Graphene oxide–ZnO nanocomposites for removal of aluminium and copper ions from acid mine drainage wastewater. International Journal of Environmental Research and Public Health, 17: 1–18.
 
Saha S., Sinha A. (2018): A review on treatment of acid mine drainage with waste materials: A novel approach. Global NEST Journal, 20: 512–528. https://doi.org/10.30955/gnj.002610
 
Sahoo P.K., Tripathy S., Panigrahi M.K., Equeenuddin (2013): Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. Applied Water Science, 3: 567–576.  https://doi.org/10.1007/s13201-013-0113-2
 
Salameh Y., Al-Lagtah N., Ahmad M.N.M., Allen S.J., Walker G.M. (2010): Kinetic and thermodynamic investigations on arsenic adsorption onto dolomitic sorbents. Chemical Engineering Journal, 160: 440–446. https://doi.org/10.1016/j.cej.2010.03.039
 
Samaei S.M., Gato-Trinidad S., Altaee A. (2020): Performance evaluation of reverse osmosis process in the post-treatment of mining wastewaters: Case study of Costerfield mining operations, Victoria, Australia. Journal of Water Process Engineering, 34: 1–11. https://doi.org/10.1016/j.jwpe.2019.101116
 
Sánchez-España J., Yusta I. (2019): Coprecipitation of Co2+, Ni2+ and Zn2+ with Mn(III/IV) oxides formed in metal-rich mine waters. Minerals, 9: 1–22. https://doi.org/10.3390/min9040226
 
Sekula P., Hiller E., Šottník P., Jurkovič Ľ., Klimko T., Vozár J. (2018): Removal of antimony and arsenic from circum-neutral mine drainage in Poproč, Slovakia: A field treatment system using low-cost iron-based material. Environmental Earth Sciences, 77: 1–14. https://doi.org/10.1007/s12665-018-7700-3
 
Selvin N., Upton J., Sims J., Barnes J. (2002): Arsenic treatment technology for groundwaters. Water Supply, 2: 11–16. https://doi.org/10.2166/ws.2002.0002
 
Sethurajan M., Lens P.N.L., Horn H.A. Figueiredo L.H.A., van Hullebusch E.D. (2017): Leaching and recovery of metals. Sustainable Heavy Metal Remediation, 6: 161–206.
 
Simmons J., Ziemkiewicz P., Courtney Black D. (2002): Use of steel slag leach beds for the treatment of acid mine drainage. Mine Water and the Environment, 21: 91–99.  https://doi.org/10.1007/s102300200024
 
Skousen J.G. (2002): A brief overview of control and treatment technologies for acid mine drainage. In: Proc. National Meeting of the American Society of Mining and Reclamation, Lexington, June 9–13, 2002: 879–899.
 
Skousen J.G., Sexstone A., Ziemkiewicz P.F. (2000): Acid mine drainage control and treatment. Reclamation of Drastically Disturbed Lands, 6: 131–168.
 
Skousen J., Zipper C.E., Rose A., Ziemkiewicz P.F., Nairn R., McDonald L.M., Kleinmann R.L. (2017): Review of passive systems for acid mine drainage treatment. Mine Water and the Environment, 36: 133–153.  https://doi.org/10.1007/s10230-016-0417-1
 
Smedley P.L., Kinniburgh D.G. (2002): A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17: 517–568.  https://doi.org/10.1016/S0883-2927(02)00018-5
 
Society for Minig, Metallurgy, and Exploration (2008): Management Technologies for Metal Mining Influenced Water: Basics of Metal Mining Influenced Water. Littleton, Society for Mining, Metallurgy, and Exploration, Inc.
 
Šottník P., Jurkovič Ľ., Hiller E., Kordík J., Slaninka I. (2015): Environmentálne záťaže. Banská Bystrica, Slovenská agentúra životného prostredia.
 
Sracek O., Kříbek B., Mihaljevič M., Ettler V., Vaněk A., Penížek V., Filip J., Veselovský F., Nyambe I. (2018): The impact of wetland on neutral mine drainage from mining wastes at Luanshya in the Zambian Copperbelt in the framework of climate change. Environmental Science and Pollution Research, 25: 28961–28972.  https://doi.org/10.1007/s11356-018-2929-7
 
Sun B., Zhao F.J., Lombi E., McGrath S.P. (2001): Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113: 111–120. https://doi.org/10.1016/S0269-7491(00)00176-7
 
Tame C., Hudson-Edwards K.A., Potter H.A.B. (2017): Weathering of Zinc-(Zn)-bearing mine wastes in a neutral mine drainage setting, Gunnerside Gill, Yorkshire. Procedia Earth and Planetary Science, 17: 284–287.  https://doi.org/10.1016/j.proeps.2016.12.056
 
Tan H., Zhang G., Heaney P.J., Webb S.M., Burgos W.D. (2010): Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems. Applied Geochemistry, 25: 389–399.  https://doi.org/10.1016/j.apgeochem.2009.12.006
 
Tan K.F., Chu K.H., Gupta B.S., Hashim M.A. (2002): Studies on fixed-bed biosorption and elution of copper using polyvinyl alcohol-immobilized seaweed biomass. Journal of Environmental Science and Health, Part A, 37: 1621–1632.  https://doi.org/10.1081/ESE-120015425
 
Tani Y., Ohashi M., Miyata N., Seyama H., Iwahori K., Soma M. (2004): Sorption of Co(II), Ni(II), and Zn(II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21-2. Journal of Environmental Science and Health, Part A, 39: 2641–2660.  https://doi.org/10.1081/ESE-200027021
 
Tebo B.M., Bargar J.R., Clement B.G., Dick G.J., Murray K.J., Parker D., Verity R., Webb S.M. (2004): Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32: 287–328.  https://doi.org/10.1146/annurev.earth.32.101802.120213
 
Thisani S.K., Kallon D.V.V., Byrne P. (2020): Geochemical classification of global mine water drainage. Sustainability, 12: 10–16. https://doi.org/10.3390/su122410244
 
Thisani S.K., Kallon D.V.V., Byrne P. (2021): Review of remediation solutions for acid mine drainage using the modified hill framework. Sustainability, 13: 1–20. https://doi.org/10.3390/su13158118
 
Thompson I.A., Huber D.M., Guest C.A., Schulze D.G. (2005): Fungal manganese oxidation in a reduced soil. Environmental Microbiology, 7: 1480–1487.  https://doi.org/10.1111/j.1462-2920.2005.00842.x
 
Trumm D. (2010): Selection of active and passive treatment systems for AMD – flow charts for New Zealand conditions. New Zealand Journal of Geology and Geophysics, 53: 195–210.  https://doi.org/10.1080/00288306.2010.500715
 
Trumm D., Pope J. (2015): Passive treatment of neutral mine drainage at a metal mine in New Zealand using an oxidizing system and slag leaching bed. Mine Water and the Environment, 34: 430–441. https://doi.org/10.1007/s10230-015-0355-3
 
Tsezos M. (1984): Recovery of uranium from biological adsorbents-desorption equilibrium. Biotechnology Bioengineering, 26: 973–981.  https://doi.org/10.1002/bit.260260823
 
Vakili M., Deng S., Cagnetta G., Wang W., Meng P., Liu D., Yu G. (2019): Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Separation and Purification Technology, 224: 373–387.  https://doi.org/10.1016/j.seppur.2019.05.040
 
Viadero J.R.C., Zhang S., Hu X., Wei X. (2020): Mine drainage: Remediation technology and resource recovery. Water Environment Research, 92: 1533–1540.  https://doi.org/10.1002/wer.1401
 
Walker G.M., Hanna J.A., Allen S.J. (2005): Treatment of hazardous shipyard wastewater using dolomitic sorbents. Water Research, 39: 2422–2428.  https://doi.org/10.1016/j.watres.2005.04.025
 
Wang H., Ren Z.J. (2014): Bioelectrochemical metal recovery from wastewater: A review. Water Research, 66: 219–232.  https://doi.org/10.1016/j.watres.2014.08.013
 
Wang S.C., Starink M.J. (2005): Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. International Materials Reviews, 50: 193–215. https://doi.org/10.1179/174328005X14357
 
Wang J., Wang W., Xiong J., Li L., Zhao B., Sohail I., He Z. (2021): A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida. Journal of Environmental Management, 280: 5–8. https://doi.org/10.1016/j.jenvman.2020.111794
 
Warrender R., Pearce N.J.G. (2007): Remediation of circum-neutral, low-iron waters by permeable reactive media 5. In: IMWA Symposium 2007: Water in Mining Environments, Cagliari, May 27–31, 2007: 82–89.
 
Warrender R., Pearce N.J.G., Perkins W.T., Florence K.M., Brown A.R., Sapsford D.J., Bowell R.J., Dey M. (2011): Field trials of low-cost reactive media for the passive treatment of circum-neutral metal mine drainage in Mid-Wales, UK. Mine Water and Environment, 30: 82–89. https://doi.org/10.1007/s10230-011-0150-8
 
Waybrant K.R., Ptacek C.J., Blowes D.W. (2002): Treatment of mine drainage using permeable reactive barriers: Column experiments. Environmental Science and Technology, 36: 1349–1356.  https://doi.org/10.1021/es010751g
 
Wei X., Viadero R.C., Buzby K.M. (2005): Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environmental Engineering Science, 22: 745–755.  https://doi.org/10.1089/ees.2005.22.745
 
Westholm L.J., Repo E., Sillanpää M. (2014): Filter materials for metal removal from mine drainage – A review. Environmental Science and Pollution Research, 21: 9109–9128.  https://doi.org/10.1007/s11356-014-2903-y
 
Wilkie J.A., Hering J.G. (1996): Adsorption of arsenic onto hydrous ferric oxide: Effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces A: Physicochemical and Engineering Aspects. A collection of papers presented at the Symposium on Colloidal and Interfacial Phenomena in Aquatic Environments, 107: 97–110.
 
Wingenfelder U., Hansen C., Furrer G., Schulin R. (2005): Removal of heavy metals from mine waters by natural zeolites. Environmental Science and Technology, 39: 4606–4613.  https://doi.org/10.1021/es048482s
 
Xueyi G., Inoue K. (2003): Elution of copper from vermiculite with environmentally benign reagents. Hydrometallurgy, 70: 9–21.  https://doi.org/10.1016/S0304-386X(03)00050-1
 
Yan B., Mai G., Chen T., Lei C., Xiao X. (2015): Pilot test of pollution control and metal resource recovery for acid mine drainage. Water Science and Technology, 72: 2308–2317.  https://doi.org/10.2166/wst.2015.429
 
Yang E., Chae K.J., Choi M.J., He Z., Kim I.S. (2019): Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment. Desalination, 452: 40–67.  https://doi.org/10.1016/j.desal.2018.11.007
 
Ye Z.H., Whiting S.N., Lin Z.Q., Lytle C.M., Qian J.H., Terry N. (2001): Removal and distribution of iron, manganese, cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. Journal Environmental Quality, 30: 1464–1473.  https://doi.org/10.2134/jeq2001.3041464x
 
Yi X., Qi Y., Li F., Shu J., Sun Z., Sun S., Chen M., Pu S. (2019): Effect of electrolyte reuse on metal recovery from waste CPU slots by slurry electrolysis. Waste Management, 95: 370–376.  https://doi.org/10.1016/j.wasman.2019.06.034
 
Younger P.L., Banwart S.A., Hedin R.S. (2002): Mining and the water environment. Mine Water: Hydrology, Pollution, Remediation, Environmental Pollution, 5: 1–63.
 
Yu R., Yuan X., Zhao Y., Hu G., Tu X. (2008): Heavy metal pollution in intertidal sediments from Quanzhou Bay, China. Journal of Environmental Sciences, 20: 664–669.
 
Zhang L., Liu N., Yang L., Lin Q. (2009): Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution. Journal of Hazardous Materials, 170: 1197–1203.  https://doi.org/10.1016/j.jhazmat.2009.05.098
 
Zhang L., Qin X., Tang J., Liu W., Yang H. (2017): Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Applied Geochemistry, 77: 80–88.  https://doi.org/10.1016/j.apgeochem.2016.05.014
 
Zhang X., Wang T., Xu Z., Zhang L., Dai Y., Tang X., Tao R., Li R., Yang Y., Tai Y. (2020): Effect of heavy metals in mixed domestic-industrial wastewater on performance of recirculating standing hybrid constructed wetlands (RSHCWs) and their removal. Chemical Engineering Journal, 379: 2–8. https://doi.org/10.1016/j.cej.2019.122363
 
Zhou J.L., Huang P.L., Lin R.G. (1998): Sorption and desorption of Cu and Cd by macroalgae and microalgae. Environmental Pollution, 101: 67–75.  https://doi.org/10.1016/S0269-7491(98)00034-7
 
Zhou Y.F., Haynes R.J. (2010): Sorption of heavy metals by inorganic and organic components of solid wastes: Significance to use of wastes as low-cost adsorbents and immobilizing agents. Critical Reviews in Environmental Science and Technology, 40: 909–977.  https://doi.org/10.1080/10643380802586857
 
Zhu Y., Fan W., Zhou T., Li X. (2019): Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of The Total Environment, 678: 253–266.  https://doi.org/10.1016/j.scitotenv.2019.04.416
 
Ziemkiewicz P.F., Skousen J.G. (1999): Steel slag in acid mine drainage treatment and control. Journal of the American Society of Mining and Reclamation, 1999: 651–656. https://doi.org/10.21000/JASMR99010651
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti