Determination of erosion rainfall criteria based on natural rainfall measurement and its impact on spatial distribution of rainfall erosivity in the Czech Republic

https://doi.org/10.17221/91/2018-SWRCitation:Brychta J., Janeček M. (2019): Determination of erosion rainfall criteria based on natural rainfall measurement and its impact on spatial distribution of rainfall erosivity in the Czech Republic. Soil & Water Res., 14: 153-162.
download PDF

Rainfall erosivity is the main factor of the USLE or RUSLE equations. Its accuracy depends on recording precision and its temporal resolution, number of stations and their spatial distribution, length of recorded period, recorded period, erosion rainfall criteria, time step of rainfall intensity and interpolation method. This research focuses on erosion rainfall criteria. A network of 32 ombrographic stations, 1-min temporal resolution rainfall data, 35.6-year period and experimental runoff plots were used. We analysed 8951 rainfalls from ombrographic stations, 100 rainfalls and caused soil losses and runoffs from experimental runoff plots. Main parameter which influenced the number of erosion rainfalls was the precondition AND/OR which determines if conditions of rainfall total (H) have to be fulfilled simultaneously with rainfall intensity (I15 or I30) or not. We proved that if parameters I15 > 6.25 mm/15 min AND H > 12.5 mm were fulfilled, then 84.2% of rainfalls caused soil loss > 0.5 t/ha and 73.7% ≥ 1 t/ha. In the case of precondition OR only 44.6% of rainfalls caused soil loss > 0.5 t/ha and 33.9% ≥ 1 t/ha. If the precondition AND was fulfilled, there were on average 75.5 rainfalls, average R factor for each rainfall was 21 MJ/ha·cm/h (without units below in the text, according international unit: 210 MJ/ha·mm/h) and average annual R factor was 45.4. In the case of precondition OR there were on average 279 rainfalls but average R factor for each rainfall was only 9.1 and average annual R factor was 67.4. Therefore if the precondition OR is used, R factor values are overestimated due to a high number of rainfalls with no or very low erosive potential. The resulting overestimated soil losses calculated using USLE/RUSLE subsequently cause an overestimation of financial expenses for erosion-control measures.

 

References:
Angulo-Martínez M., López-Vicente M., Vicente-Serrano S. M., Beguería S. (2009): Mapping rainfall erosivity at a regional scale: a comparison of interpolation methods in the Ebro Basin (NE Spain). Hydrology and Earth System Sciences, 13, 1907-1920  https://doi.org/10.5194/hess-13-1907-2009
 
Ballabio Cristiano, Borrelli Pasquale, Spinoni Jonathan, Meusburger Katrin, Michaelides Silas, Beguería Santiago, Klik Andreas, Petan Sašo, Janeček Miloslav, Olsen Preben, Aalto Juha, Lakatos Mónika, Rymszewicz Anna, Dumitrescu Alexandru, Tadić Melita Perčec, Diodato Nazzareno, Kostalova Julia, Rousseva Svetla, Banasik Kazimierz, Alewell Christine, Panagos Panos (2017): Mapping monthly rainfall erosivity in Europe. Science of The Total Environment, 579, 1298-1315  https://doi.org/10.1016/j.scitotenv.2016.11.123
 
Banasik K., Gorski D., Mitchell J.K. (2001): Rainfall erosivity for East and Central Poland. In: Int. Symp. Soil Erosion Research for the 21st Century, Honolulu, Jan 3–5, 2001: 279–282.
 
Bonilla Carlos A., Vidal Karim L. (2011): Rainfall erosivity in Central Chile. Journal of Hydrology, 410, 126-133  https://doi.org/10.1016/j.jhydrol.2011.09.022
 
Brychta J., Janeček M. (2017): Evaluation of discrepancies in spatial distribution of rainfall erosivity in the Czech Republic caused by different approaches using GIS and geostatistical tools. Soil and Water Research, 12, 117-127  https://doi.org/10.17221/176/2015-SWR
 
Dostál T., Vrána K., Krása K., Jakubíková A., Schwarzová P., Uhlířová K., Bečvář M., Veselá J., Kavka P., Zandler D., Rosendorf P. (2006): Partial Final Report of Project COST No. 1P04OC634.001 Methods and Ways of Predicting Surface Runoff, Erosion and Transport Processes in the Landscape. Prague, ČVUT. (in Czech)
 
Diodato Nazzareno, Bellocchi Gianni (2007): Estimating monthly (R)USLE climate input in a Mediterranean region using limited data. Journal of Hydrology, 345, 224-236  https://doi.org/10.1016/j.jhydrol.2007.08.008
 
Fiener Peter, Neuhaus Peter, Botschek Johannes (2013): Long-term trends in rainfall erosivity–analysis of high resolution precipitation time series (1937–2007) from Western Germany. Agricultural and Forest Meteorology, 171-172, 115-123  https://doi.org/10.1016/j.agrformet.2012.11.011
 
Foster G.R., Yoder D.C., Weesies G.A., McCool D.K., McGregor K.C., Bingner R.L. (2003): Draft User's Guide, Revised Universal Soil Loss Equation Version 2 (RUSLE-2).Washington, D.C., USDA-Agricultural Research Service.
 
Hanel Martin, Máca Petr, Bašta Petr, Vlnas Radek, Pech Pavel (2016): The rainfall erosivity factor in the Czech Republic and its uncertainty. Hydrology and Earth System Sciences, 20, 4307-4322  https://doi.org/10.5194/hess-20-4307-2016
 
Hernando David, Romana Manuel G. (2015): Estimating the rainfall erosivity factor from monthly precipitation data in the Madrid Region (Spain). Journal of Hydrology and Hydromechanics, 63, 55-62  https://doi.org/10.1515/johh-2015-0003
 
Janeček M., Pasák V., Bohuslávek J., Sokolová I., Toman F., Fuxa Z., Švehla F. (1992): Methodology Protection of Agricultural Land from Erosion. Prague, UVTIZ. (in Czech)
 
Janeček M., Kubátová E., Tippl M. (2006): Revised determination of the rainfall-runoff erosivity factor R for application of USLE in the Czech Republic. Soil and Water Research, 1: 65–71
 
Janeček Miloslav, Květoň Vít, Kubátová Eliška, Kobzová Dominika, Vošmerová Michaela, Chlupsová Jana (2013): Values of rainfall erosivity factor for the Czech Republic. Journal of Hydrology and Hydromechanics, 61, 97-102  https://doi.org/10.2478/johh-2013-0013
 
Andreas Klik , Franz Konecny (2013): Rainfall Erosivity in Northeastern Austria. Transactions of the ASABE, 56, 719-725  https://doi.org/10.13031/2013.42677
 
Krása J., Středová H., Dostál T., Novotný I. (2014): Rainfall erosivity research on the territory of the Czech Republic. In: Rožnovský J., Litschmann T. (eds.): Mendel and Climatology, Brno, Sept 3–5, 2014: 182–196.
 
Lee Joon-Hak, Heo Jun-Haeng (2011): Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. Journal of Hydrology, 409, 30-48  https://doi.org/10.1016/j.jhydrol.2011.07.031
 
de Santos Loureiro Nuno, de Azevedo Coutinho Miguel (2001): A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. Journal of Hydrology, 250, 12-18  https://doi.org/10.1016/S0022-1694(01)00387-0
 
Meusburger K., Steel A., Panagos P., Montanarella L., Alewell C. (2012): Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrology and Earth System Sciences, 16, 167-177  https://doi.org/10.5194/hess-16-167-2012
 
Mikhailova E. A., Bryant R. B., Schwager S. J., Smith S. D. (1997): Predicting Rainfall Erosivity in Honduras. Soil Science Society of America Journal, 61, 273-  https://doi.org/10.2136/sssaj1997.03615995006100010039x
 
Panagos Panos, Karydas Christos G., Gitas Ioannis Z., Montanarella Luca (2012): Monthly soil erosion monitoring based on remotely sensed biophysical parameters: a case study in Strymonas river basin towards a functional pan-European service. International Journal of Digital Earth, 5, 461-487  https://doi.org/10.1080/17538947.2011.587897
 
Panagos Panos, Ballabio Cristiano, Borrelli Pasquale, Meusburger Katrin, Klik Andreas, Rousseva Svetla, Tadić Melita Perčec, Michaelides Silas, Hrabalíková Michaela, Olsen Preben, Aalto Juha, Lakatos Mónika, Rymszewicz Anna, Dumitrescu Alexandru, Beguería Santiago, Alewell Christine (2015): Rainfall erosivity in Europe. Science of The Total Environment, 511, 801-814  https://doi.org/10.1016/j.scitotenv.2015.01.008
 
Panagos Panos, Borrelli Pasquale, Meusburger Katrin, Yu Bofu, Klik Andreas, Jae Lim Kyoung, Yang Jae E., Ni Jinren, Miao Chiyuan, Chattopadhyay Nabansu, Sadeghi Seyed Hamidreza, Hazbavi Zeinab, Zabihi Mohsen, Larionov Gennady A., Krasnov Sergey F., Gorobets Andrey V., Levi Yoav, Erpul Gunay, Birkel Christian, Hoyos Natalia, Naipal Victoria, Oliveira Paulo Tarso S., Bonilla Carlos A., Meddi Mohamed, Nel Werner, Al Dashti Hassan, Boni Martino, Diodato Nazzareno, Van Oost Kristof, Nearing Mark, Ballabio Cristiano (2017): Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 7, -  https://doi.org/10.1038/s41598-017-04282-8
 
Pérez-Sánchez J., Senent-Aparicio J. (2016): Estimating rainfall erositivity in semiarid regions. Comparison of expressions and parameters using data from the Guadalentín Basin (SE Spain). Soil and Water Research, 11, 75-82  https://doi.org/10.17221/279/2014-SWR
 
Pilz Jürgen, Spöck Gunter (2008): Why do we need and how should we implement Bayesian kriging methods. Stochastic Environmental Research and Risk Assessment, 22, 621-632  https://doi.org/10.1007/s00477-007-0165-7
 
Renard Kenneth G., Freimund Jeremy R. (1994): Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157, 287-306  https://doi.org/10.1016/0022-1694(94)90110-4
 
Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. (1997): Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Handbook No. 703, Washington D.C., USDA-ARS.
 
Schwertmann U., Vogel W., Kainz M. (1987): Bodenerosion durch Wasser. Stuttgart, E. Ulmer Gmbh.
 
Toman F., Sanetrník J., Filip J. (1993): The influence of climatic conditions on the factor of erosion efficiency of torrential rains. In: Proc. Agro-meteorological Conf. 93, Brno, Nov 25–26, 1993: 67–69. (in Czech)
 
Van Der Knijff J.M., Jones R.J.A., Montanarella L. (2000): Soil Erosion Risk Assessment in Europe. European Soil Bureau, Joint Research Centre, Space Applications Institute.
 
Verstraeten Gert, Poesen Jean, Demarée Gaston, Salles Christian (2006): Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates. Journal of Geophysical Research, 111, -  https://doi.org/10.1029/2006JD007169
 
R. G. Williams , J. M. Sheridan (1991): EFFECT OF RAINFALL MEASUREMENT TIME AND DEPTH RESOLUTION ON EI CALCULATION. Transactions of the ASAE, 34, 0402-0406  https://doi.org/10.13031/2013.31675
 
Wischmeier W.H., Smith D.D. (1978): Predicting Rainfall Erosion Losses – A Guide to Conservation Planning. USDA Agricultural Handbook No. 537, Washington D.C., USDA-ARS.
 
Yin S., Xie Y., Nearing M.A., Wang C. (2007): Estimation of rainfall erosivity using 5- to 60-minute fixed-interval rainfall data from China. CATENA, 70, 306-312  https://doi.org/10.1016/j.catena.2006.10.011
 
download PDF

© 2019 Czech Academy of Agricultural Sciences