Comparison of magnesium determination methods on Hungarian soils

https://doi.org/10.17221/92/2019-SWRCitation:Vona V., Centeri C., Giczi Z., Kalocsai R., Biro Z., Jakab G., Milics G., Kovacs A.J. (2020): Comparison of magnesium determination methods on Hungarian soils. Soil & Water Res., 15: 173-180.
download PDF

Magnesium is one of the most important nutrient elements. Soils are tested for magnesium in many countries with several extractants. Each country has its own validated methods, best-suited for its soils. The current study was designed to compare different magnesium content measuring methods with 80 Hungarian samples. The magnesium content was determined by the potassium chloride (1 M KCl 1:10), Mehlich 3 and CoHex (cobalt hexamine trichloride) methods. The maximum, mean and median values resulting from all the Mg determination methods showed the following order of measured magnitude: KCl < CoHex < M3.

References:
Baier J., Baierova V. (1981): Hundredth molar calcium chloride extraction procedure, Part IV, Calibration with conventional soil testing methods for potassium. Communications in Soil Science and Plant Analysis, 29: 1641–1648. https://doi.org/10.1080/00103629809370056
 
Behera S.K., Shukla A.K. (2015): Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degradation and Development, 26: 71–79.  https://doi.org/10.1002/ldr.2306
 
Budnakova M., Čermak P. (2009): Fertilising recommendation system based on results of agrochemical soil testing. Fertilizer and Fertilization, 37: 147–159.
 
Burns R.G., Burns V.M. (1974): Magnesium. In: Wedepohl K.H. (ed.): Handbook of Geochemistry. New York, Springer-Verlag: II-2, 12-A1-A17.
 
Chan K.Y., Davey B.G., Geering H.R. (1979): Adsorption of magnesium and calcium by a soil with variable charge. Soil Science Society of America Journal, 43: 301–304. https://doi.org/10.2136/sssaj1979.03615995004300020012x
 
Ciesielski H., Sterckeman T. (1997): Determination of CEC and exchangeable cations in soils by means of CoHex. Effects of experimental conditions. Agronomie, 17: 1–7. https://doi.org/10.1051/agro:19970101
 
Dontsova K.M., Norton L.D. (2002): Clay dispersion, infiltration, and erosion as influenced by exchangeable Ca and Mg. Soil Science, 167: 184–193.  https://doi.org/10.1097/00010694-200203000-00003
 
Fotyma M., Dobers E.S. (2008): Soil testing methods and fertilizer recommendations in Central-Eastern European countries. Fertilizer and Fertilization, 30: 6–93.
 
Gransee A., Führs H. (2013): Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil, 368: 5–21. https://doi.org/10.1007/s11104-012-1567-y
 
Hunsaker V.E., Pratt P.F. (1970): The solubility of mixed magnesium-aluminium hydroxide in various aqueous solutions. Soil Science Society of America Journal, 34: 823–825. https://doi.org/10.2136/sssaj1970.03615995003400050041x
 
Koch M., Busse M., Naumann M., Jákli B., Smit I., Cakmak I., Hermans C., Pawelzik E. (2018): Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiologia Plantarum, 166: 921–935.  https://doi.org/10.1111/ppl.12846
 
Lal R. (2008): Laws of sustainable soil management. Agronomy for Sustainable Development, 29: 7–9.  https://doi.org/10.1051/agro:2008060
 
Li Q., Song X., Zhang J., Min S. (2019): Determination of calcium and magnesium in the Solanaceae plant by near infrared spectroscopy combined with interval combination optimization algorithm. Spectroscopy Letters, 52: 168–174.  https://doi.org/10.1080/00387010.2019.1582544
 
Loch J. (1970): Relation between the magnesium content of soils and the magnesium taken up by plants. [PhD. Thesis.] Budapest, Hungarian Academy of Sciences. (in Hungarian)
 
Loch I., Jászberényi I., Vágó I. (1998): The one hundredth molar calcium chloride extraction procedure. Part III: Calibration with conventional soil testing methods for magnesium. Communications in Soil Science and Plant Analysis, 29: 1633–1640. https://doi.org/10.1080/00103629809370055
 
Mamo T., Richter C., Heiligtag B. (1996): Comparison of extractants for the determination of available phosphorus, potassium, calcium, magnesium and sodium in some Ethiopian and German soils. Communications in Soil Science and Plant Analysis, 27: 2197–2212. https://doi.org/10.1080/00103629609369697
 
Marschner H. (1995): Mineral Nutrition of Higher Plants. 2nd Ed. London, Elsevier.
 
Matejovic I., Durackova A. (1994): Comparison of mehlich 1-, 2-, and 3-, calcium chloride-, bray-, olsen-, egner- and schachtschabel-extractants for determinations of nutrient in two soil types. Communications in Soil Science and Plant Analysis, 25: 1289–1302. https://doi.org/10.1080/00103629409369115
 
Mazaeva M.M. (1967): The critical magnesium content of soils. Agrohimija Moszkva, 10: 93–105. (in Russian)
 
Mehlich A. (1978): New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Communications in Soil Science and Plant Analysis, 9: 477–492. https://doi.org/10.1080/00103627809366824
 
Mehlich A. (1984): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409–1416. https://doi.org/10.1080/00103628409367568
 
Metson A.J., Brooks J.M. (1975): Magnesium in New Zealand soils: II. Distribution of exchangeable and “reserve” magnesium in the main soil groups. New Zealand Journal of Agricultural Research, 18: 317–335. https://doi.org/10.1080/00288233.1975.10421055
 
Milics G., Kovács A.J., Pörneczi A., Nyéki A., Varga Z., Nagy V., Lichner Ľ., Németh T., Baranyai G., Neményi M. (2017): Soil moisture distribution mapping in topsoil and its effect on maize yield. Biologia (Poland), 72: 847–853. https://doi.org/10.1515/biolog-2017-0100
 
Minasny B., McBratney A. (2006): A conditioned latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32: 1378–1388.
 
Murray K., Linder R.W. (1984): Fulvic acids: structure and metal binding. II. Predominant metal binding sites. Journal of Soil Science, 35: 217–222. https://doi.org/10.1111/j.1365-2389.1984.tb00277.x
 
Ortas I., Güzel N., Ibrikçi H. (1999): Determination of potassium and magnesium status of soils using different soil extraction procedures in the upper part of Mesopotamia (in the Harran Plain). Communications in Soil Science and Plant Analysis, 30: 2607–2625. https://doi.org/10.1080/00103629909370400
 
Rice H.B., Kamprath E.J. (1968): Availability of exchangeable and nonexchangeable Mg in sandy Coastal Plain soils. Soil Science Society of America Journal, 32: 386–388. https://doi.org/10.2136/sssaj1968.03615995003200030034x
 
Ristimaki L. (2007): Potassium and Magnesium Fertiliser Recommendations in Some European Countries. Proceedings No. 620, York, Proceedings of the International Fertilizer Society: 32.
 
Roemheld V., Kirkby E.A. (2007): Magnesium Functions in Crop Nutrition and Yield. Proceedings No. 616, York, Proceedings of the International Fertilizer Society: 24.
 
Roudier P., Hedley C.B. (2013): Smart sampling to assist on-farm nutrient management. In: Currie L.D., Christensen C.L. (eds.): Accurate and Efficient Use of Nutrients on Farms. Occasional Report No. 26. Palmerston North, Fertilizer and Lime Research Centre, Massey University: 60.
 
Salmon R.C. (1963): Magnesium relationships in soils and plants. Journal of the Science of Food and Agriculture, 14: 605–610. https://doi.org/10.1002/jsfa.2740140901
 
Schroeder D., Zahiroleslam S. (1962): Die Magnesium-Vorrate Schleswig-Holsteinischer Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 100: 207–215. https://doi.org/10.1002/jpln.19631000304
 
Schroeder D., Zahiroleslam S., Hoffmann W.E. (1962): Untersuchungen über die Verfugbarkeit der Magnesiumvorrate des Bodens. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 100: 215–224. https://doi.org/10.1002/jpln.19631000305
 
Sposito G. (1994): Chemical Equilibria and Kinetics in Soils. Oxford, Oxford University Press.
 
Staugaitis G., Rutkauskienė R. (2010): Comparison of magnesium determination methods as influenced by soil properties. Agriculture (Žemdirbystė), 97:105–116.
 
Thomas G.W. (1977): Historical developments in soil chemistry: ion exchange. Soil Science Society of America Journal, 41: 230–238.  https://doi.org/10.2136/sssaj1977.03615995004100020015x
 
Van Erp P.J. (2002): The potential of multi-nutrient soil extraction with CaCl2 in nutrient management. [Master Thesis.] Wageningen, Wageningen University, Department of Sub-department of Soil Quality. (in Dutch)
 
Wang J.J., Harrell D.L., Henderson R.E., Bell P.F. (2004): Comparison of soil-test extractants for phosphorus, potassium, calcium, magnesium, sodium, zinc, copper, manganese, and iron in Louisiana soils. Communications in Soil Science and Plant Analysis, 35: 145–160. https://doi.org/10.1081/CSS-120027640
 
Wolf A., Beegle D. (eds.) (2009): Recommended soil tests for macro and micronutrients. In: Northeastern Regional Publication: Recommended Soil Testing Procedures for the Northeastern United States. 3rd Ed. Northeastern Regional Publication No. 493, Newark, University of Delaware: 39–48.
 
Yan B., Hou Y. (2018): Effect of soil magnesium on plants: a review. IOP Conference Series: Earth and Environmental Science, 170: 022168.  https://doi.org/10.1088/1755-1315/170/2/022168
 
Zbíral J., Němec P. (2000): Integrating of Mehlich 3 extractant into the Czech soil testing scheme. Communications in Soil Science and Plant Analysis, 31: 2171–2182. https://doi.org/10.1080/00103620009370574
 
download PDF

© 2020 Czech Academy of Agricultural Sciences