Haemato-chemical and immune variations in Holstein cows at different stages of lactation, parity, and age

https://doi.org/10.17221/110/2019-VETMEDCitation:Kim S., Jung S., Do Y., Jung Y., Choe C., Ha S., Jeong H., Cho A., Oh S., Kim E., Yoo J., Kim S. (2020): Haemato-chemical and immune variations in Holstein cows at different stages of lactation, parity, and age. Veterinarni Medicina, 65: 95-103.
download PDF

Physiological components are influenced by various factors. However, little is comprehensively understood about lactation, parity, and age-related blood profile changes in dairy cows. Thus, we investigated significant variables associated with haemato-chemical and immune changes in healthy dairy cows. Blood was collected from 246 Holstein cows to analyse the physiological changes at different stages of lactation, parity, and age. The white blood cells (WBCs) and monocytes were influenced by the parity or age. Cows over three years of age showed a decreased WBC and monocyte count when compared to cows under three years of age. The lactation stage affected the red blood cell (RBC) profiles and metabolism, liver function-related components, and immunoglobulin A (IgA). A decrease in the haemoglobin (Hb) and haematocrit (HCT) were associated with peak lactation. The blood urea nitrogen (BUN) and total cholesterol (T-CHOL) concentrations, and alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) activities increased in peak or mid lactation and remained high up to late lactation. An increased serum IgA concentration was observed in early and mid-lactation compared to that in late gestation. Many components of the haemato-chemical and immunological profiles changed (Hb, HCT, BUN, T-CHOL, ALT, GGT, and IgA) at a specific lactation stage under the physiological conditions. These data revealed that the lactation stage was a major variable contributing to the physiological variations in the dairy cows. Therefore, the lactation stage should be considered when determining haemato-chemical and immunological abnormalities.

References:
Bjerre-Harpoth V, Friggens NC, Thorup VM, Larsen T, Damgaard BM, Ingvartsen KL, Moyes KM. Metabolic and production profiles of dairy cows in response to decreased nutrient density to increase physiological imbalance at different stages of lactation. J Dairy Sci. 2012 May;95(5):2362-80. https://doi.org/10.3168/jds.2011-4419
 
Brscic M, Cozzi G, Lora I, Stefani AL, Contiero B, Ravarotto L, Gottardo F. Short communication: Reference limits for blood analytes in Holstein late-pregnant heifers and dry cows: Effects of parity, days relative to calving, and season. J Dairy Sci. 2015 Nov;98(11):7886-92. https://doi.org/10.3168/jds.2015-9345
 
Cozzi G, Ravarotto L, Gottardo F, Stefani AL, Contiero B, Moro L, Brscic M, Dalvit P. Short communication: Reference values for blood parameters in Holstein dairy cows: Effects of parity, stage of lactation, and season of production. J Dairy Sci. 2011 Aug;94(8):3895-901. https://doi.org/10.3168/jds.2010-3687
 
Detilleux JC, Kehrli ME, Stabel JR, Freeman AE, Kelley DH. Study of immunological dysfunction in periparturient Holstein cattle selected for high and average milk production. Vet Immunol Immunopathol. 1995 Feb;44(3-4):251-67. https://doi.org/10.1016/0165-2427(94)05302-9
 
Doornenbal H, Tong AK, Murray NL. Reference values of blood parameters in beef cattle of different ages and stages of lactation. Can J Vet Res. 1988 Jan;52(1):99-105.
 
Edmonson AJ, Lean IJ, Weaver LD, Farver T, Webster G. A body condition scoring chart for Holstein dairy cows. J Dairy Sci. 1989 Jan 1;72(1):68-78.  https://doi.org/10.3168/jds.S0022-0302(89)79081-0
 
George JW, Snipes J, Lane VM. Comparison of bovine hematology reference intervals from 1957 to 2006. Vet Clin Pathol. 2010 Jun;39(2):138-48. https://doi.org/10.1111/j.1939-165X.2009.00208.x
 
Gunnink JW. Post-partum leucocytic activity and its relationship to caesarean section and retained placenta. Vet Q. 1984 Apr;6(2):55-7. https://doi.org/10.1080/01652176.1984.9693911
 
Herman N, Trumel C, Geffre A, Braun JP, Thibault M, Schelcher F, Bourges-Abella N. Hematology reference intervals for adult cows in France using the Sysmex XT-2000iv analyzer. J Vet Diagn Invest. 2018 Sep;30(5):678-87. https://doi.org/10.1177/1040638718790310
 
Horst RL, Goff JP, Reinhardt TA. Adapting to the transition between gestation and lactation: Differences between rat, human and dairy cow. J Mammary Gland Biol Neoplasia. 2005 Apr;10(2):141-56. https://doi.org/10.1007/s10911-005-5397-x
 
Humer E, Aschenbach JR, Neubauer V, Kroger I, Khiaosa-Ard R, Baumgartner W, Zebeli Q. Signals for identifying cows at risk of subacute ruminal acidosis in dairy veterinary practice. J Anim Physiol Anim Nutr (Berl). 2018 Apr;102(2):380-92. https://doi.org/10.1111/jpn.12850
 
Joksimovic Todorovic M, Davidovic V. Changes in white blood pictures and some biochemical parameters of dairy cows in peripartum period and early lactation. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka. 2012 Jun 19;62(2):151-8.
 
Kayano M, Kida K. Identifying alterations in metabolic profiles of dairy cows over the past two decades in japan using principal component analysis. J Dairy Sci. 2015 Dec;98(12):8764-74. https://doi.org/10.3168/jds.2015-9791
 
Kehrli ME, Nonnecke BJ, Roth JA. Alterations in bovine lymphocyte function during the periparturient period. Am J Vet Res. 1989 Feb;50(2):215-20.
 
Kessler EC, Gross JJ, Bruckmaier RM, Albrecht C. Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. J Dairy Sci. 2014 Sep;97(9):5481-90. https://doi.org/10.3168/jds.2014-7926
 
Kida K. Use of every ten-day criteria for metabolic profile test after calving and dry off in dairy herds. J Vet Med Sci. 2002 Nov;64(11):1003-10. https://doi.org/10.1292/jvms.64.1003
 
Mordak R, Stewart PA. Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: Examples of prevention. Acta Vet Scand. 2015 Dec 2;57:84. https://doi.org/10.1186/s13028-015-0175-2
 
Pysera B, Opalka A. The effect of gestation and lactation of dairy cows on lipid and lipoprotein patterns and composition in serum during winter and summer feeding. J Anim Feed Sci. 2000 Jul 15;9(3):411-24. https://doi.org/10.22358/jafs/68061/2000
 
Quiroz-Rocha GF, Leblanc SJ, Duffield TF, Wood D, Leslie KE, Jacobs RM. Reference limits for biochemical and hematological analytes of dairy cows one week before and one week after parturition. Can Vet J. 2009 Apr;50(4):383-8.
 
Roland L, Drillich M, Iwersen M. Hematology as a diagnostic tool in bovine medicine. J Vet Diagn Invest. 2014 Sep;26(5):592-8. https://doi.org/10.1177/1040638714546490
 
Roussel JD, Seybt SH, Toups G. Metabolic profile testing for Jersey cows in Louisiana: Reference values. Am J Vet Res. 1982 Jun;43(6):1075-7.
 
Trevisi E, Minuti A. Assessment of the innate immune response in the periparturient cow. Res Vet Sci. 2018 Feb 1;116:47-54.  https://doi.org/10.1016/j.rvsc.2017.12.001
 
Trevisi E, Jahan N, Bertoni G, Ferrari A, Minuti A. Pro-inflammatory cytokine profile in dairy cows: consequences for new lactation. Ital J Anim Sci. 2015 Jan 1;14(3):285-92.  https://doi.org/10.4081/ijas.2015.3862
 
Zhao S, Zhang C, Wang J, Bu D, Liu G, Zhou L. Association of production factors with milk IgA and IgM concentrations in normal lactating cows. J Dairy Res. 2010 Nov;77(4):481-6. https://doi.org/10.1017/S0022029910000336
 
download PDF

© 2020 Czech Academy of Agricultural Sciences