Examination of the minimum inhibitory concentration of amoxicillin and marbofloxacin against Streptococcus suis using standardised methods


Sperling D, Karembe H, Zouharova M, Nedbalcova K (2020): Examination of the minimum inhibitory concentration of amoxicillin and marbofloxacin against Streptococcus suis using standardised methods. Vet Med-Czech 65, 377–386.

download PDF

The results of the antimicrobial susceptibility testing of clinical isolates Streptococcus suis to amoxicillin and marbofloxacin obtained by the agar dilution method and broth microdilution method with the results obtained by the commercially available E-test were compared. Comparisons between the methods based on the determination of the minimal inhibitory concentration (MIC) of the antimicrobials were assessed based on the degree and frequency of the categorical agreement (Agar dilution method as a reference system) and the percentage of the categorical agreement and error rate. A statistical evaluation was determined using the Bland-Atman method. The presented MIC values, determined for the isolates in the E-test, were slightly different from the MIC values determined by the dilution tests, mainly due to the different defined testing concentrations. For the E-test as the test system and agar-dilution method as the reference system, no error of any class was detected (very major, major and minor error) and a complete categorical agreement was obtained between the evaluated methods for amoxicillin. For amoxicillin, the regression and correlation analysis show linear relationships between the E-test and the two dilution methods with significant coefficients of determination (0.62 and 0.75). The slopes of the equality and regression lines were not significantly different. However, the E-test tends to slightly overestimate the MIC values when compared to the microdilution. The reverse is true when compared with the agar dilution. There was good agreement between the E-test and the dilution methods with a low bias (0.001 3 and −0.005 0), all the experimental data were within the computed limits of agreement. For marbofloxacin, the same trends were observed with lower coefficients of determination (0.42 and 0.73) and a less favourable agreement. The E-test constantly underestimated the MIC values when compared to the two dilution methods. No significant difference between the microdilution and agar dilution was obtained.

AMEG – European Medicines Agency. EMA/CVMP/CHMP/682198/2017. Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals – Categorisation of antimicrobials. Draft [Internet]. 2019 [cited 2020 Sep 23, 2020]. Available from: https://www.ema.europa.eu/en/documents/other/answer-request-european-commission-updating-scientific-advice-impact-public-health-animal-health-use_en.pdf.
Baquero F, Canton R, Martinez-Beltran J, Bolmstrom A. The E-Test as an epidemiologic tool. Diagn Microbiol Infect Dis. 1992 Jul;15(5):483-7. https://doi.org/10.1016/0732-8893(92)90095-B
Berghaus LJ, Giguere S, Guldbech K, Warner E, Ugorji U, Berghaus RD. Comparison of Etest, disk diffusion, and broth macrodilution for in vitro susceptibility testing of Rhodococcus equi. J Clin Microbiol. 2015 Jan 1;53(1):314-8. https://doi.org/10.1128/JCM.02673-14
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;327(8476):307-10. https://doi.org/10.1016/S0140-6736(86)90837-8
Burch DGS, Sperling D. Amoxicillin-current use in swine medicine. J Vet Pharmacol Ther. 2018 Jun;41(3):356-68. https://doi.org/10.1111/jvp.12482
Callens BF, Haesebrouck F, Maes D, Butaye P, Dewulf J, Boyen F. Clinical resistance and decreased susceptibility in Streptococcus suis isolates from clinically healthy fattening pigs. Microb Drug Resist. 2013 Apr;19(2):146-51. https://doi.org/10.1089/mdr.2012.0131
CLSI. Development of in vitro susceptibility testing criteria and quality control parameters for veterinary antimicrobial agents. CLSI document Vet 02-A3. 3rd ed. Wayne, PA, USA: Clinical Laboratory Standards Institute; 2008.
CLSI. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. CLSI document Vet 01-A4. 4th ed. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2013.
CLSI. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. CLSI document Vet 08. 5th ed. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2018.
Elder BL, Hansen SA, Kellogg JA, Marsik FJ, Zabransky RJ. Cumitech 31: Verification and validation of procedures in the clinical microbiology laboratory. Washington, DC, USA: American Society for Microbiology; 1997.
El Garch F, de Jong A, Simjee S, Moyaert H, Klein U, Ludwig C, Marion H, Haag-Diergarten S, Richard-Mazet A, Thomas V, Siegwart E. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009–2012: VetPath results. Vet Microbiol. 2016 Oct 15;194:11-22. https://doi.org/10.1016/j.vetmic.2016.04.009
El Garch F, Kroemer S, Galland D, Morrissey I, Woehrle F. Survey of susceptibility to marbofloxacin in bacteria isolated from diseased pigs in Europe. Vet Rec. 2017 Jun 17;180(24):591. https://doi.org/10.1136/vr.103954
Ericsson HM, Sherris JC. Antibiotic susceptibility testing. Report of an International Collaborative Study. Acta Path MicrobiolScand. 1971;217(Suppl):1-90.
Gottschalk M, Higgins R, Boudreau M. Use of polyvalent coagglutination reagents for serotyping of Streptococcus suis. J Clin Microbiol. 1993 Aug;31(8):2192-4.  https://doi.org/10.1128/JCM.31.8.2192-2194.1993
Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin Infect Dis. 2009 Dec 1;49(11):1749-55. https://doi.org/10.1086/647952
Lobova D, Cizek A. Susceptibility of Brachyspira hyodysenteriae isolates to doxycycline using agar dilution and epsilometer test. Acta Vet Brno. 2004;73(3):329-33. https://doi.org/10.2754/avb200473030329
Mai NT, Hoa NT, Nga TV, Linh le D, Chau TT, Sinh DX, Phu NH, Chuong LV, Diep TS, Campbell J, Nghia HD, Minh TN, Chau NV, de Jong MD, Chinh NT, Hien TT, Farrar J, Schultsz C. Streptococcus suis meningitis in adults in Vietnam. Clin Infect Dis. 2008 Mar 1;46(5):659-67.
Marie J, Morvan H, Berthelot-Herault F, Sanders P, Kempf I, Gautier-Bouchardon AV, Jouy E, Kobisch M. Antimicrobial susceptibility of Streptococcus suis isolated from swine in France and from humans in different countries between 1996 and 2000. J Antimicrob Chemother. 2002 Aug;50(2):201-9. https://doi.org/10.1093/jac/dkf099
Miftahussurur M, Fauzia KA, Nusi IA, Setiawan PB, Syam AF, Waskito LA, Doohan D, Ratnasari N, Khomsan A, Adnyana IK, Akada J, Yamaoka Y. E-test versus agar dilution for antibiotic susceptibility testing of Helicobacter pylori: A comparison study. BMC Res Notes. 2020 Jan 10;13(1):1-6. https://doi.org/10.1186/s13104-019-4877-9
Mittal KR, Higgins R, Lariviere S. Identification and serotyping of Haemophilus pleuropneumoniae by coagglutination test. J Clin Microbiol. 1983 Dec;18(6):1351-4. https://doi.org/10.1128/JCM.18.6.1351-1354.1983
Richez P, Keck N, Burren X. Streptococcus suis: Bacterial profile of amoxicillin, susceptibility and resistance in porcine clinical strains. J Vet Pharm Therap. 2012 Oct 1;35(10):116-7.
Schumacher A, Vranken T, Malhotra A, Arts JJC, Habibovic P. In vitro antimicrobial susceptibility testing methods: Agar dilution to 3D tissue-engineered models. Eur J Clin Microbiol Infect Dis. 2018 Feb;37(2):187-208.
Schwarz S, Bottner A, Goossens L, Hafez HM, Hartmann K, Kaske M, Kehrenberg C, Kietzmann M, Klarmann D, Klein G, Krabisch P, Luhofer G, Richter A, Schulz B, Sigge C, Waldmann KH, Wallmann J, Werckenthin C. A proposal of clinical breakpoints for amoxicillin applicable to porcine respiratory tract pathogens. Vet Microbiol. 2008 Jan 1;126(1-3):178-88. https://doi.org/10.1016/j.vetmic.2007.06.023
Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, Gaastra W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother. 2010 Apr;65(4):601-4. https://doi.org/10.1093/jac/dkq037
Stuckey S. Automated systems: An overview. In: Schwalbe R, Steele-Moore L, Goodwin AC, editors. Antimicrobial susceptibility testing protocols. Boca Raton, USA: CRC Press; 2007. p. 81-9.
Tande D, Picard B, The Brittany Hospital Laboratories. Evaluation of the E-test for routine testing of the susceptibility of Streptococcus pneumoniae to benzylpenicillin, amoxicillin and cefotaxime. Clin Microbiol Infect. 1997 Aug;3(4):474-9. https://doi.org/10.1111/j.1469-0691.1997.tb00285.x
Taylor D. Bacterial diseases. In: Taylor D, editor. Pig diseases. 9th ed. Glasgow, UK: Dr. D.J. Taylor; 2013. 11 p.
Toutain PL, Bousquet-Melou A, Damborg P, Ferran AA, Mevius D, Pelligand L, Veldman KT, Lees P. En route towards European clinical breakpoints for veterinary antimicrobial susceptibility testing: A position paper explaining the VetCAST approach. Front Microbiol. 2017 Dec 15;8:1-13. https://doi.org/10.3389/fmicb.2017.02344
Varela NP, Gadbois P, Thibault C, Gottschalk M, Dick P, Wilson J. Antimicrobial resistance and prudent drug use for Streptococcus suis. Anim Health Res Rev. 2013 Jun;14(1):68-77. https://doi.org/10.1017/S1466252313000029
Waites KB, Figarola TA, Schmid T, Crabb DM, Duffy LB, Simecka JW. Comparison of agar versus broth dilution techniques for determining antibiotic susceptibilities of Ureaplasma urealyticum. Diagn Microbiol Infect Dis. 1991 May-Jun;14(3):265-71. https://doi.org/10.1016/0732-8893(91)90041-D
Wang K, Sun X, Lu C. Development of rapid serotype-specific PCR assays for eight serotypes of Streptococcus suis. J Clin Microbiol. 2012 Oct;50(10):3329-34. https://doi.org/10.1128/JCM.01584-12
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti