The inhibiting effect of microwave radiation on Paenibacillus larvae spores suspended in water

https://doi.org/10.17221/156/2020-VETMEDCitation:

Pijacek M, Bzdil J, Bedanova I, Danihlik J, Moravkova M (2021): The inhibiting effect of microwave radiation on Paenibacillus larvae spores suspended in water. Vet Med-Czech 66, 110–116.

download PDF

The aim of this paper was to investigate the effects of microwave radiation on the viability of Paenibacillus larvae spores and to study the relationship between the microwave power consumption, the exposure time and the number of spores in the examined suspensions. Sterile distilled water suspensions were made using larval detritus, to contain tens, hundreds and thousands of spores. The suspensions of all the dilutions were gradually exposed to a microwave radiation power of 170, 510 and 850 W. In all the cases, the exposure time was 1, 2, 3, 4, 5, 10, 15, 20, 25 and 30 minutes. After cooling, 0.1 ml of each exposed suspension was inoculated onto three modified MYP (mannitol egg yolk polymyxin) agar plates and incubated aerobically at 37 ± 1 °C for 120 hours. The statistical evaluation of the spore counts decreasing with time was performed with the use of the nonparametric Friedman’s variance test using the Unistat Statistical Package v6.5. The results showed that the rate of devitalisation of the spores is dependent on the microwave oven power consumption, but independent of the number of spores. Using a power consumption of 170, 510 and 850 W, the devitalisation of the spores occurred after 15, 3 and 2 min of exposure, respectively.

References:
Banik S, Bandyopadhyay S, Ganguly S. Bioeffects of microwave: A brief review. Bioresour Technol. 2003;87(2):155-9. https://doi.org/10.1016/S0960-8524(02)00169-4
 
Bzdil J. Nove metody v diagnostice moru vceliho plodu [New methods in American foulbrood diagnostics]. [PhD thesis]. Brno: University of Veterinary and Farmaceutical Sciences; 2010. 121 p. Czech.
 
Celandroni F, Longo I, Tosoratti N, Giannessi F, Ghelardi E, Salvetti S, Baggiani A, Senesi S. Effect of microwave radiation on Bacillus subtilis spores. J Appl Microbiol. 2004;97(6):1220-7. https://doi.org/10.1111/j.1365-2672.2004.02406.x
 
Hansen H, Brodsgaard CJ. American Foulbrood: A review of its biology, diagnosis and control. Bee World. 1999;80(1):5-23. https://doi.org/10.1080/0005772X.1999.11099415
 
Jankovic SM, Milosev MZ, Novakovic MLJ. The effects of microwave radiation on microbial cultures. Hosp Pharm Int Multi J. 2014;1(2):102-8. https://doi.org/10.5937/hpimj1402102J
 
Jones GA, Layer DH, Osenkowsky TG. National Assotiation of Broadcasters Engineering Handbook. 10th ed. Oxford, UK: Focal Press; 2013. 2120 p.
 
Kim SY, Shin SJ, Song CH, Jo EK, Kim HJ, Park JK. Destruction of Bacillus licheniformis spores by microwave irradiation. J Appl Microbiol. 2009 Mar;106(3):877-85.
 
Meredith RJ. Engineers’ handbook of industrial microwave heating. London, UK: Institution of Electrical Engineering; 1998. 363 p.
 
Moline de la Paz M, Fernandez NJ, Medici SK, Fasce D, Gende LB. Effect of microwave treatment on microbial contamination of honeys and on their physicochemical and thermal properties. Pol J Food Nutr Sci. 2015;65(2):119-26. https://doi.org/10.1515/pjfns-2015-0031
 
Ojha SC, Chankhamhaengdecha S, Singhakaew S, Ounjai P, Janvilisri T. Inactivation of Clostridium difficile spores by microwave irradiation. Anaerobe. 2016 Apr;38:14-20.
 
Quinn PJ, Markey BK, Leonard FC, FitzPatrick ES, Fanning S, Hartigan PJ. Veterinary microbiology and microbial disease. 2nd ed. Oxford, UK: Blackwell Publishing Ltd.; 2011. 912 p.
 
Woo IS, Rhee IK, Park HD. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl Environ Microbiol. 2000 May;66(5):2243-7. https://doi.org/10.1128/AEM.66.5.2243-2247.2000
 
Zar JH. Biostatistical analysis. 4th ed. Upper Saddle River, USA: Prentice Hall; 1999. 929 p.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti