Adventitial histopathological changes after coronary stenting in a porcine model

https://doi.org/10.17221/159/2019-VETMEDCitation:

Perez-Martinez C, Perez de Prado A, Caballero-Manso V, Regueiro-Purrinos M, de Garnica Garcia MG, Cuellas-Ramon C, Gonzalo-Orden JM, Lopez-Benito M, Altonaga JR, Benito-Gomez T, Fernandez-Vazquez F (2020): Adventitial histopathological changes after coronary stenting in a porcine model. Vet Med-Czech 65, 465–472.

download PDF

The adverse long-term events in first-generation drug-eluting stents were associated with chronic inflammatory response to the polymer. As an alternative, stents with biodegradable polymers emerged, whose effects on the vascular response are not yet fully known. Our objectives were to study the adventitial response to the stent implantation and the role of the polymeric vehicle. A histological (Haematoxylin-Eosin, Verhoeff van Gieson) and immunohistochemical (von Willebrand factor, alpha-smooth muscle actin) analysis were performed on resin-embedded arterial sections from fifteen Large White pigs, 28 days after the random implantation in the coronary arteries of: a chromium-cobalt stent and a stent coated with a permanent polyacrylate or biodegradable poly(D,L)-lactic-co-glycolic polymer, the two latter ones are loaded with sirolimus. Independent of the stent, the adventitial inflammation was associated with the adventitial area (P = 0.006 8) and the inflammation score (P = 0.037 1); and the adventitial actin-positive cells with the vascular damage (P = 0.001 2). A significant relationship was observed between the greater percentages of the restenosis and the more intense inflammation (P = 0.035 1) and the actin-positive cells (P = 0.011 9) in the adventitia. The polymeric vehicle increased the adventitial actin-positive cells (P = 0.018), independent of the type of polymer. The adventitial changes seem to be related to the restenosic process 28 days after the coronary stenting. Further investigations are necessary to confirm the role of the polymeric vehicle on the adventitial histopathological changes.

References:
Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: Overview, evolution, and next generation. Prog Biomater. 2018 Sep;7(3):175-205. https://doi.org/10.1007/s40204-018-0097-y
 
Buccheri D, Piraino D, Andolina G, Cortese B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J Thorac Dis. 2016 Oct;8(10):E1150-62. https://doi.org/10.21037/jtd.2016.10.93
 
Chang H, Lei H, Zhao Y, Yang R, Wu A, Mao Y, Huang Y, Lv X, Zhao J, Lou L, Zhang D, He Y, Xu Y, Yang T, Zhao M. Yiqihuoxuejiedu formula restrains vascular remodeling by reducing the inflammation reaction and Cx43 expression in the adventitia after balloon injury. Evid Based Complement Alternat Med. 2015;2015:904273. https://doi.org/10.1155/2015/904273
 
Christen T, Verin V, Bochaton-Piallat M, Popowski Y, Ramaekers F, Debruyne P, Camenzind E, van Eys G, Gabbiani G. Mechanisms of neointima formation and remodeling in the porcine coronary artery. Circulation. 2001 Feb 13;103(6):882-8. https://doi.org/10.1161/01.CIR.103.6.882
 
Estevez-Loureiro R, Perez de Prado A, Perez-Martinez C, Cuellas-Ramon C, Regueiro-Purrinos M, Gonzalo-Orden JM, Lopez-Benito M, Molina-Crisol M, Duocastella-Codina L, Fernandez-Vazquez F. Safety and efficacy of new sirolimus-eluting stent models in a preclinical study. Rev Esp Cardiol (Engl Ed). 2015 Dec;68(12):1118-24.
 
Fleenor BS, Bowles DK. Negligible contribution of coronary adventitial fibroblasts to neointimal formation following balloon angioplasty in swine. Am J Physiol Heart Circ Physiol. 2009 May;296(5):H1532-9.
 
Goel SA, Guo LW, Liu B, Kent KC. Mechanisms of post-intervention arterial remodelling. Cardiovasc Res. 2012 Dec 1;96(3):363-71.
 
Hofma SH, Whelan DM, van Beusekom HM, Verdouw PD, van der Giessen WJ. Increasing arterial wall injury after long-term implantation of two types of stent in a porcine coronary model. Eur Heart J. 1998 Apr;19(4):601-9. https://doi.org/10.1053/euhj.1997.0753
 
Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006 Jul 4;48(1):193-202. https://doi.org/10.1016/j.jacc.2006.03.042
 
Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB. In-stent restenosis: Contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998 Jan;31(1):224-30. https://doi.org/10.1016/S0735-1097(97)00450-6
 
Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007 Sep;75(4):640-8. https://doi.org/10.1016/j.cardiores.2007.06.023
 
McMahon S, Bertollo N, O’Cearbhaill ED, Salber J, Pie-rucci L, Duffy P, Durig T, Bi V, Wang W. Bio-resorbable polymer stents: A review of material progress and prospects. Prog Polym Sci. 2018;83:79-96. https://doi.org/10.1016/j.progpolymsci.2018.05.002
 
Mulligan-Kehoe MJ, Simons M. Vasa vasorum in normal and diseased arteries. Circulation. 2014 Jun 17;129(24):2557-66. https://doi.org/10.1161/CIRCULATIONAHA.113.007189
 
Natsuaki M, Kozuma K, Morimoto T, Kadota K, Muramatsu T, Nakagawa Y, Akasaka T, Igarashi K, Tanabe K, Morino Y, Ishikawa T, Nishikawa H, Awata M, Abe M, Okada H, Takatsu Y, Ogata N, Kimura K, Urasawa K, Tarutani Y, Shiode N, Kimura T; NEXT Investigators. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent: A randomized, controlled, noninferiority trial. J Am Coll Cardiol. 2013 Jul 16;62(3):181-90.
 
Nishimiya K, Matsumoto Y, Shindo T, Hanawa K, Hasebe Y, Tsuburaya R, Shiroto T, Takahashi J, Ito K, Ishibashi-Ueda H, Yasuda S, Shimokawa H. Association of adventitial vasa vasorum and inflammation with coronary hyperconstriction after drug-eluting stent implantation in pigs in vivo. Circ J. 2015;79(8):1787-98. https://doi.org/10.1253/circj.CJ-15-0149
 
Perez de Prado A, Perez-Martinez C, Cuellas C, Gonzalo-Orden JM, Diego A, Regueiro M, Martinez-Fernandez B, Altonaga JR, Marin Francisco JG, Fernandez-Vazquez F. Preclinical evaluation of coronary stents: Focus on safety issues. Curr Vasc Pharmacol. 2013 Jan;11(1):74-99. https://doi.org/10.2174/157016113804547575
 
Perez de Prado A, Perez Martinez C, Cuellas Ramon C, Regueiro Purrinos M, Lopez Benito M, Gonzalo Orden JM, Rodriguez Altonaga JA, Estevez Loureiro R, Benito Gonzalez T, Vinuela Baragano D, Molina Crisol M, Amoros Aguilar M, Perez Serranos I, Vidal Parreu A, Benavides Montegordo A, Duocastella Codina L, Fernandez Vaz-quez F. Safety and efficacy of new biodegradable polymer-based sirolimus-eluting stents in a preclinical model. Rev Esp Cardiol (Engl Ed). 2017 Dec;70(12):1059-66. https://doi.org/10.1016/j.rec.2017.05.021
 
Perkins LEL, Rippy MK. Balloons and stents and scaffolds: Preclinical evaluation of interventional devices for occlusive arterial disease. Toxicol Pathol. 2019 Apr;47(3):297-310.
 
Sangiorgi G, Taylor AJ, Farb A, Carter AJ, Edwards WD, Holmes DR, Schwartz RS, Virmani R. Histopathology of postpercutaneous transluminal coronary angioplasty remodeling in human coronary arteries. Am Heart J. 1999 Oct;138(4 Pt 1):681-7. https://doi.org/10.1016/S0002-8703(99)70183-3
 
Schwartz SM, Majesky MW, Murry CE. The intima: Development and monoclonal responses to injury. Atherosclerosis. 1995 Dec;118 Suppl:S125-40. https://doi.org/10.1016/0021-9150(95)90080-2
 
Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, Holmes DR. Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model. J Am Coll Cardiol. 1992 Feb;19(2):267-74. https://doi.org/10.1016/0735-1097(92)90476-4
 
Schwartz RS, Edelman E, Virmani R, Carter A, Granada JF, Kaluza GL, Chronos NA, Robinson KA, Waksman R, Weinberger J, Wilson GJ, Wilensky RL. Drug-eluting stents in preclinical studies: Updated consensus recommendations for preclinical evaluation. Circ Cardiovasc Interv. 2008 Oct;1(2):143-53.
 
Shi Y, O’Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation. 1996 Oct 1;94(7):1655-64. https://doi.org/10.1161/01.CIR.94.7.1655
 
Sperling C, Waliszewski MW, Kherad B, Krackhardt F. Comparative preclinical evaluation of a polymer-free sirolimus-eluting stent in porcine coronary arteries. Ther Adv Cardiovasc Dis. 2019 Jan-Dec;13:1753944719826335.
 
Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV, Li M, Riddle SR, Frid MG. The adventitia: Essential regulator of vascular wall structure and function. Annu Rev Physiol. 2013;75:23-47. https://doi.org/10.1146/annurev-physiol-030212-183802
 
Tomberli B, Mattesini A, Baldereschi GI, Di Mario C. A brief history of coronary artery stents. Rev Esp Cardiol (Engl Ed). 2018 May;71(5):312-9.
 
Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, Mihalcsik L, Tespili M, Valsecchi O, Kolodgie FD. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: Should we be cautious? Circulation. 2004 Feb 17;109(6):701-5. https://doi.org/10.1161/01.CIR.0000116202.41966.D4
 
van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HM, Serruys PW, Holmes DR Jr, Ellis SG, Topol EJ. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation. 1996 Oct 1;94(7):1690-7.
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti