Comparison of in vitro (fish cell line) and in vivo (fish and crustacean) acute toxicity tests in aquatic toxicology

https://doi.org/10.17221/161/2020-VETMEDCitation:

Kolarova J, Velisek J, Svobodova Z (2021): Comparison of in vitro (fish cell line) and in vivo (fish and crustacean) acute toxicity tests in aquatic toxicology. Vet Med-Czech 66, 350–355.

download PDF

The use of in vitro (fish cell lines) is a cost-effective, very rapid, and informative tool for toxicological assessments. Using the neutral red (NR) assay, we compared the in vitro acute toxicity (20hEC50) of twenty-six chemical substances on a rainbow trout gonad cell line (RTG-2) with their in vivo acute toxicity to Barbados Millions Poecilia reticulata (48hLC50, OECD 203) and crustacean Daphnia magna (48hEC50, OECD 202). The 20hEC50 values obtained by the NR assay were higher in nearly all the cases when compared to the 48hLC50 in P. reticulata and the 48hEC50 in D. magna, indicating that the sensitivity of the RTG-2 cell line was lower compared to P. reticulata and D. magna. A high (r = 0.89) and significant (P < 0.001) correlation was recorded between the 20hEC50 values of the RTG-2 and the 48hEC50 values of D. magna. The correlation between the 20hEC50 values of the RTG-2 and the 48hLC50 values of P. reticulata was lower (r = 0.65; P < 0.001), but also significant. The authors recommend use of the NR assay on the RTG-2 cell lines as a screening protocol to evaluate the toxicity of xenobiotics in aquatic environments to narrow the spectrum of the concentrations for the fish toxicity test.

References:
Ahne W. Untersuchungen uber die Verwendung von Fischzellkulturen fur Toxizitatsbestimmungen zur Einschrankung und Ersatz des Fischtests [Use of fish cell cultures for toxicity determination in order to reduce and replace the fish tests]. Zentralbl Bakteriol Mikrobiol Hyg B. 1985 May;180(5-6):480-504. German.
 
Araujo CS, Marques SA, Carrondo MJ, Goncalves LM. In vitro response of the brown bullhead catfish (BB) and rainbow trout (RTG-2) cell lines to benzo[a]pyrene. Sci Total Environ. 2000 Mar 20;247(2-3):127-35. https://doi.org/10.1016/S0048-9697(99)00484-2
 
Babin MM, Canas I, Tarazona JV. An in vitro approach for ecotoxicity testing of toxic and hazardous wastes. Span J Agric Res. 2008 Oct;6(S1):124-8. https://doi.org/10.5424/sjar/200806S1-392
 
Bols NC, Bolinska SA, Dixon DG, Hodson DV, Kaiser KLE. The use of fish cell-cultures as an indication of contaminant toxicity to fish. Aquat Toxicol. 1985 Mar;6(2):147-55. https://doi.org/10.1016/0166-445X(85)90013-X
 
Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alternations and neutral red absorption. Toxicol Lett. 1985 Mar;24(2-3):119-24. https://doi.org/10.1016/0378-4274(85)90046-3
 
Bruschweiler BJ, Wurgler FE, Fent K. Cytotoxicity in vitro of organotin compounds to fish cells PHLC-1 (Poeciliopsis lucida). Aquat Toxicol. 1995 Jun;32(2-3):143-60. https://doi.org/10.1016/0166-445X(94)00087-7
 
Caminada D, Escher C, Fent K. Cytotoxicity of pharmaceuticals found in aquatic systems: Comparison of PLHC-1 and RTG-2 fish cell lines. Aquat Toxicol. 2006 Aug 23;79(2):114-23. https://doi.org/10.1016/j.aquatox.2006.05.010
 
Clothier R. The frame modified neutral red uptake cytotoxicity test. Queen´s Medicinal Centre Nottingham, Invittox Protocol No. 3a. Nottingham, England: INVITTOX; 1990. 10 p.
 
EU – European Union. White paper: Strategy for a future chemicals policy. COM 88 final. Brussels: Commision of the European Communities; 2001.
 
Halder M, Ahne W. Evaluation of waste water toxicity with three cytotoxicity tests. Z Wasser Abwass For. 1990 Aug;23(6):233-6.
 
Hutchinson TH, Barrett S, Buzby M, Constable D, Hartmann A, Hayes E, Huggett D, Laenge R, Lillicrap AD, Straub JO, Thompson RS. A strategy to reduce the numbers of fish used in acute ecotoxicity testing of pharmaceuticals. Environ Toxicol Chem. 2003 Dec;22(12):3031-6. https://doi.org/10.1897/02-558
 
Kahraman EN, Sacan MT. On the prediction of cytotoxicity of diverse chemicals for topminnow (Poeciliopsis lucida) hepatoma cell line, PLHC-1. SAR QSAR Environ Res. 2018 Sep;29(9):675-91. https://doi.org/10.1080/1062936X.2018.1509235
 
Kocan RM, Landolt ML, Sabo KM. In vitro toxicity of 8 mutagens-carcinogens for 3 fish cell-lines. Bull Environ Contam Toxicol. 1979 Sep;23(1-2):269-74. https://doi.org/10.1007/BF01769954
 
Kohlpoth M, Rusche B. Die Verwendung von Fischzellkulturen als Ersatz fur den Fischtest im Abwassergesetz [The use of fish cell cultures as a replacement for the fish test in the Waste Water Act]. In: Schoffel H, Schulte-Hermann R, Tritthart HA, editors. Moglichkeiten und Grenzen der Reduktion von Tierversuchen, Ersatz- und Erganzungsmethoden zu Tierversuchen [Possibilities and limits to the reduction of animal experiments, substitute and complementary methods to animal experiments]. Wien, New York: Springer; 1992. p. 118-21. German.
 
Marion M, Denizeau F. Rainbow trout and human cells in culture for the evaluation of the toxicity of aquatic pollutants: A study with cadmium. Aquat Toxicol. 1983 May;3(4):329-43. https://doi.org/10.1016/0166-445X(83)90014-0
 
Martin-Alguacil N, Babich H, Rosenberg DW, Borenfreund E. In vitro response of the brown bullhead catfish cell line, BB, to aquatic pollutants. Arch Environ Contam Toxicol. 1991 Jan;20(1):113-7. https://doi.org/10.1007/BF01065336
 
Morcillo P, Esteban MA, Cuesta A. Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere. 2016 Feb;144(1):225-33. https://doi.org/10.1016/j.chemosphere.2015.08.020
 
Ni Shuilleabhain S, Mothersill C, Sheehan D, O’Brien NM, O’ Halloran J, Van Pelt FN, Davoren M. In vitro cytotoxicity testing of three zinc metal salts using established fish cell lines. Toxicol In Vitro. 2004 Jun;18(3):365-76. https://doi.org/10.1016/j.tiv.2003.10.006
 
OECD – Organisation for Economic Co-operation and Development. OECD´s guidelines for the testing of chemicals: 203 acute toxicity test for fish. Paris: OECD Publishing; 1992. 12 p.
 
OECD – Organisation for Economic Co-operation and Development. OECD´s guidelines for the testing of chemicals: 202 Daphnia sp., acute immobilisation test. Paris: OECD Publishing; 2004. 12 p.
 
Pitter P. Vliv chemickeho slozeni vody, vcetne tzv. „tvrdosti“, na toxicitu kovu na vodni organismy [Effects of water chemistry including “hardness” on metal toxicity for aquatic organisms]. Vodní hospodářství. 1980 Aug;30(B):203-6. Czech.
 
Rachlin JW, Perlmutter A. Fish cells in culture for study of aquatic toxicants. Water Res. 1968 Aug;2(6):409-14. https://doi.org/10.1016/0043-1354(68)90060-2
 
Rusche B, Kohlpoth M. The R1-cytotoxicity test as a replacement for the fish test stipulated in the German Waste Waters Act. In: Braunbeck T, Hanke W, Segner H, editors. Fish ecotoxicology and ecophysiology. Germany: VCH Verlagsgesellschaft; 1993. p. 81-92.
 
Segner H. Cytotoxicity assay with fish cells as an alternative to the acute lethality assay with fish. Altern Lab Anim. 2004 Oct;32(4):375-82. https://doi.org/10.1177/026119290403200409
 
Svobodova Z, Faina R. Aquatic testing of trichlorphon in the laboratory and field. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P, editors. Freshwater field tests for hazard assessment of chemicals. Boca Raton, FL: Lewis Publishers; 1994. p. 361-7.
 
Tan F, Wang M, Wang W, Lu Y. Comparative evaluation of the cytotoxicity sensitivity of six fish cell lines to four heavy metals in vitro. Toxicol In Vitro. 2008 Feb;22(1):164-70. https://doi.org/10.1016/j.tiv.2007.08.020
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti