The effect of moderate treadmill exercise on the resistive index of the medial long posterior ciliary artery in dogs

https://doi.org/10.17221/162/2018-VETMEDCitation:Pugliese M., Ragusa M., Biondi V., Passantino A., Zhang K., Macri F. (2019): The effect of moderate treadmill exercise on the resistive index of the medial long posterior ciliary artery in dogs. Veterinarni Medicina, 64: 400-406.
download PDF

The resistive index (RI) is an indirect measurement of arterial resistance by means of a ratio between the peak systolic and end diastolic velocities recorded with a spectral Doppler device, especially used to evaluate the vascular damage in ocular diseases such as glaucoma. Some ocular variables such as the intraocular pressure (IOP), the choroidal thickness, the axial length and the ocular blood flow may be influenced by physical exercise. The purpose of this study was to evaluate the influence of the exercise on the RI of the medial long posterior ciliary artery in dogs, and correlate the data obtained with the IOP values. Ten clinically healthy dogs were subjected to moderate physical exercise on a canine motorised treadmill at different speeds for 45 minutes. A colour Doppler examination was performed and the RI values were calculated for the medial long posterior ciliary artery at rest, immediately after the exercise, and after 60 minutes at the end of the exercise. At the same times, the IOP was recorded by applanation tonometry. The data were analysed by a two-way repeated ANOVA measurement in order to compare the RI and the IOP. Wilcoxon’s test was applied for the post hoc comparison. Spearman’s rank correlation for non-normal distribution was used to determine a relationship between the RI and the IOP. The at rest RI was 0.722 +/–0.022, IOP 12.38 +/3.21 mm Hg. A significant decrease in the RI was observed immediately after the exercise (0.697 +/–0.035) and during the passive recovery phase (0.682 +/–0.042). A significant decrease in the IOP (11+/3.39 mmHg) was recorded after 60 min of the passive recovery phase; at the end of the exercise, a slight decrease (12.29+/4.26 mm Hg) mm Hg was detected. During the test, a linear correlation between the RI and the IOP was observed. Our results suggest that exercise induces the modification of the ophthalmic blood flow in dogs, presumably related to the compensatory neuro-hormonal mechanisms.

References:
Aburn NS, Sergott RC (1993): Orbital colour Doppler imaging. Eye 7, 639–647.
 
Albaugh RA, Keil SM, Ou Z, Bello NM (2014): Intraocular pressure changes in equine athletes during endurance competitions. Veterinary Ophthalmology 17, 154–159. https://doi.org/10.1111/vop.12182
 
Akal A, Ulas T, Goncu T, Karakas E, Karakas O, Kurnaz F, Boyaci FN, Yilmaz OF, Bata A, Yildiz S (2014): Evaluation of resistive index using Color Doppler Imaging of orbital arteries in geriatric patients with hypertension. Indian Journal of Ophthalmology 62, 671–674. https://doi.org/10.4103/0301-4738.136204
 
Baxter GM, Williamson TH (1995): Color Doppler imaging of the eye: normal ranges, reproducibility, and observer variation. Journal of Ultrasound in Medicine 14, 91–96. https://doi.org/10.7863/jum.1995.14.2.91
 
Beck D, Harris A, Evans D, Martin B (1995): Ophthalmic arterial hemodynamics during isometric exercise. Journal of Glaucoma 4, 317–321. https://doi.org/10.1097/00061198-199510000-00004
 
Birch AA, Dirnhuber MJ, Hartley Davies R, Iannotti F, Neil-Dwyer G (1995): Assessment of autoregulation by means of periodic changes in blood pressure. Stroke 26, 834–837.  https://doi.org/10.1161/01.STR.26.5.834
 
Blum M, Bachmann K, Wintzer D, Riemer T, Vilser W, Strobel J (1999): Non-invasive measurement of the Bayliss effect in retinal autoregulation. Graefe´s Archives for Clinical and Experimental Ophthalmology 237, 296–300. https://doi.org/10.1007/s004170050236
 
Bude RO, Rubin JM (1999): Relationship between the resistive index and vascular compliance and resistance. Radiology 211, 411–417.
 
Choi H, Lee Y, Yeon S, Lee H, Lee H (2011): Effects of anti-glaucoma drugs on resistive index of the medial long posterior ciliary artery using color Doppler imaging in Beagle dogs. Journal of Veterinary Science 12, 99–101. https://doi.org/10.4142/jvs.2011.12.1.99
 
Dudea SM (2011): Ultrasonography of the eye and orbit. Medical Ultrasonography 13, 171–174.
 
Ferrandis I, Jakovljevic S, Aprea F, Corletto F (2013): Effect of two sedative protocols and hepatosplenic disease on Doppler indices of splenic arteries in dogs: a preliminary study. Veterinary Journal 197, 712–716.  https://doi.org/10.1016/j.tvjl.2013.03.030
 
Findl O, Strenn K, Wolzt M (1997): Effects of changes in intraocular pressure on human ocular haemodynamics. Current Eye Research 16, 1024–1029.  https://doi.org/10.1076/ceyr.16.10.1024.9024
 
Gale MB, Wells AP, Wilson GW (2009): Effects of exercise on ocular physiology and disease. Survey of Ophthalmology 54, 349–355. https://doi.org/10.1016/j.survophthal.2009.02.005
 
Gelatt KN, Brooks DE (1999): The canine glaucomas. In: Gelatt KN (ed): Veterinary Ophthalmology. 3rd edn. Lippincott Williams and Wilkins, Philadelphia. 701–754 p.
 
Gelatt KN, Miyabayashi T, Gelatt-Nicholson KJ, MacKay EO (2003): Progressive changes in ophthalmic blood velocities in Beagles with primary open angle glaucoma. Veterinary Ophthalmology 6, 77–84. https://doi.org/10.1046/j.1463-5216.2003.00273.x
 
Gelatt-Nicholson KJ, Gelatt KN, Mackay EO, Brooks DE, Newell SM (1999a): Doppler imaging of the ophthalmic vasculature of the normal dog: blood velocity measurements and reproducibility. Veterinary Ophthalmology 2, 87–96. https://doi.org/10.1046/j.1463-5224.1999.00062.x
 
Gelatt-Nicholson KJ, Gelatt KN, Mackay EO, Brooks DE, Newell SM (1999b): Comparative Doppler imaging of the ophthalmic vasculature in normal beagles and beagles with inherited primary open angle glaucoma. Veterinary Ophthalmology 2, 97–105. https://doi.org/10.1046/j.1463-5224.1999.00064.x
 
Giudice E, Giannetto C, Casella S, Piccione G (2010): The effect of aerobic exercise on intraocular pressure in horse. Acta Veterinaria Brno 79, 409–413. https://doi.org/10.2754/avb201079030409
 
Hong J, Zhang H, Kuo DS, Wang H, Huo Y, Yang D, Wang N (2014): The short-term effects of exercise on intraocular pressure, choroidal thickness and axial length. PLoS One 29. doi: 10.1371/journal.pone.0104294. https://doi.org/10.1371/journal.pone.0104294
 
Kallberg ME, Brooks DE, Komaromy AM, Miyabayashi T, Bradshaw PT (2003): The effect of an L-type calcium channel blocker on the hemodynamics of orbital arteries in dogs. Veterinary Ophthalmology 6, 141–146. https://doi.org/10.1046/j.1463-5224.2003.00281.x
 
Kiss B, Dallinger S, Polak K, Findl O, Eichler HG, Schmetterer L (2001): Ocular hemodynamics during isometric exercise. Microvascular Research 61, 1–13. https://doi.org/10.1006/mvre.2000.2269
 
Kiuchi Y, Mishima HK, Hotehama Y, Furumoto A, Hirota A, Onari K (1994): Exercise intensity determines the magnitude of IOP decrease after running. Japanese Journal of Ophthalmology 38, 191–195.
 
Lee H, Chang D, Eom K, Choi H, Seo K, Choi M, Yoon J (2002): Use of color Doppler imaging for determining the resistive index of the medial long posterior ciliary artery in clinical normal conscious dogs. American Journal of Veterinary Research 63, 211–214. https://doi.org/10.2460/ajvr.2002.63.211
 
Liu CJ, Chou Y, Chou JC, Chiou HJ, Chiang SC, Liu JH (1997): Retrobulbar haemodynamic changes studied by colour Doppler imaging in glaucoma. Eye 11, 818–826. https://doi.org/10.1038/eye.1997.212
 
Lovasik JV, Kergoat H, Riva CE, Petrig BL, Geiser M (2003): Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure. Investigative Ophthalmology & Visual Science 44, 2126–2132.
 
MacKinnon JR, McKillop G, O’Brien C, Swa K, Butt Z, Nelson P (2000): Colour Doppler imaging of the ocular circulation in diabetic retinopathy. Acta Ophthalmologica Scandinavia 78, 386–389. https://doi.org/10.1034/j.1600-0420.2000.078004386.x
 
Macri F, Pugliese M, Di Petro S, Coco MA, Liotta L, Niutta PP, Nardi S, Quartuccio M, Lanteri G, Piccionello AP (2015): Doppler ultrasonographic estimation of renal resistive index in horse: Comparison between left and right kidneys. Journal of Equine Veterinary Science 35, 111–115. https://doi.org/10.1016/j.jevs.2014.12.005
 
Martin B, Harris A, Hammel T, Malinovsky V (1999): Mechanism of exercise-induced ocular hypotension. Investigative Ophthalmology & Visual Science 40, 1011–1015.
 
Movaffaghy A, Chamot SR, Petrig BL, Riva CE (1998): Blood flow in the human optic nerve head during isometric exercise. Experimental Eye Research 67, 561– 568. https://doi.org/10.1006/exer.1998.0556
 
Munk P, Downey D, Nicolle D, Vellet AD, Rankin R, Lin DT (1993): The role of colour flow Doppler ultrasonography in the investigation of disease in the eye and orbit. Canadian Journal of Ophthalmology 28, 171–176.
 
Nassr MA, Morris CL, Netland PA, Karcioglu ZA (2009): Intraocular pressure change in orbital disease. Survey of Ophthalmology 54, 519–544. https://doi.org/10.1016/j.survophthal.2009.02.023
 
Nemeth J, Knezy K, Tapaszto B, Kovacs R, Harkanyi Z (2002): Different autoregulation response to dynamic exercise in ophthalmic and central retinal arteries: a color Doppler study in healthy subjects. Graefes Archives for Clinical and Experimental Ophthalmology 240, 835–840.  https://doi.org/10.1007/s00417-002-0552-1
 
Novellas R, Espada Y, Ruiz de Gopegui R (2007): Doppler ultrasonographic estimation of renal and ocular resistive and pulsatility indices in normal dogs and cats. Veterinary Radiology and Ultrasound 48, 69–73. https://doi.org/10.1111/j.1740-8261.2007.00206.x
 
Ostrowska J, Kielbowicz Z, Zaleska-Dorobisz U, Atamaniuk W, Pietsch-Fulbiszewska A, Kinda W (2016): Resistive index (RI) obtained in renal interlobar arteries of normal dogs and cats by means of Doppler ultrasonography. Pakistan Veterinary Journal 36, 45–48.
 
Polska E, Simader C, Weigert G, Doelemeyer A, Kolodjaschna J, Scharmann O, Schmetterer L (2007): Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Investigative Ophthalmology & Visual Science 48, 3768–3774.
 
Pournaras CJ, Riva CE, Bresson-Dumont H, De Gottrau P, Bechetoille A (2004): Regulation of optic nerve head blood flow in normal tension glaucoma patients. European Journal Ophthalmology 14, 226–235. https://doi.org/10.1177/112067210401400307
 
Pozniak MA, Kelcz F, Stratta RJ, Oberley TD (1988): Extraneous factors affecting resistive index. Investigative Radiology 23, 899–904. https://doi.org/10.1097/00004424-198812000-00004
 
Rankin SJ (1999): Color Doppler imaging of the retrobulbar circulation in glaucoma. Survey of Ophthalmology 43, S176–S182. https://doi.org/10.1016/S0039-6257(99)00043-0
 
Roff EJ, Harris A, Chung HS, Hosking SL, Morrison AM, Halter PJ, Kagemann L (1999): Comprehensive assessment of retinal, choroidal and retrobulbar haemodynamics during blood gas perturbation. Graefe’s Archives for Clinical Experimental Ophthalmology 237, 984–990. https://doi.org/10.1007/s004170050334
 
Rojanapongpun P, Drance SM (1993): Velocity of ophthalmic arterial flow recorded by Doppler ultrasound in normal subjects. American Journal of Ophthalmology 115, 174–180. https://doi.org/10.1016/S0002-9394(14)73921-2
 
Sayin N, Kara N, Pekel G, Altinkaynak H (2015): Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography. Indian Journal Ophthalmology 63, 445–450.  https://doi.org/10.4103/0301-4738.159884
 
Szatmari V, Sotonyi P, Voros K (2001): Normal duplex Doppler waveforms of major abdominal blood vessels in dogs: a review. Veterinary Radiology and Ultrasound 42, 93–107. https://doi.org/10.1111/j.1740-8261.2001.tb00911.x
 
Vrbovska T, Hornakova L, Drahovska Z, Kozar M, Trbolova A (2017): The use of colour Doppler imaging to determine the effects of administration of butorphanol, medetomidine and ketamine on indices of feline ocular impedance. Veterinarni Medicina 62, 35–40. https://doi.org/10.17221/77/2016-VETMED
 
Williamson TH, Harris A (1996): Color Doppler ultrasound imaging of the eye and orbit. Survey of Ophthalmology 40, 255–256. https://doi.org/10.1016/S0039-6257(96)82001-7
 
Wylegała A (2016): The effects of physical exercises on ocular physiology: A review. Journal of Glaucoma 25, 843–849. https://doi.org/10.1097/IJG.0000000000000454
 
Zhu MM, Lai JSM, Choy BNK, Shum JWH, Lo ACY, Ng ALK, Chan JCH, So KF (2018): Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmologica 96, e676–e691. https://doi.org/10.1111/aos.13661
 
download PDF

© 2019 Czech Academy of Agricultural Sciences