Immunohistochemical mapping of thymic microenvironment in sterlet (Acipenser ruthenus)

https://doi.org/10.17221/181/2019-VETMEDCitation:Salkova E., Flajshans M., Steinbach C. (2020): Immunohistochemical mapping of thymic microenvironment in sterlet (Acipenser ruthenus). Veterinarni Medicina, 65: 301-308.
download PDF

In this study, we describe the immunohistochemical characterisation of the thymus, the main lymphoid organ, in sturgeon. The wide range cytokeratin, vimentin, S-100 protein, LCA (CD45) and CD3 were selected as the immunohistochemical markers to map the thymus in juvenile sterlet (Acipenser ruthenus). The epithelial cells and Hassall’s corpuscles were labelled with a wide range cytokeratin. The fibroblasts and connective tissue within the thin fibrous capsule on the thymic surface expressed vimentin positivity. The stromal reticular cells were S-100 protein positive. The Leukocyte Common Antigen LCA (CD45) was negative on the thymic lymphocytes. The CD3 was negative on the thymic lymphocytes with cross-reactivity on the non-targeted structures. In conclusion, the commercially available antibodies against the wide range cytokeratin, vimentin and S-100 protein can be used to differentiate components of the sturgeon thymus, while the LCA (CD45) and CD3 application failed. We suggest that further studies are needed to generate fish specific antibodies.

References:
Alabyev BY, Guselnikov SV, Najakshin AM, Mechetina LV, Taranin AV. CD3epsilon homologues in the chondrostean fish Acipenser ruthenus. Immunogenetics. 2000 Oct;51(12):1012-20.  https://doi.org/10.1007/s002510000236
 
Araki K, Suetake H, Kikuchi K, Suzuki Y. Characterization and expression analysis of CD3varepsilon and CD3gamma/delta in fugu, Takifugu rubripes. Immunogenetics. 2005 Apr;57(1-2):158-63.  https://doi.org/10.1007/s00251-005-0772-8
 
Boardman T, Warner C, Ramirez-Gomez F, Matrisciano J, Bromage E. Characterization of an anti-rainbow trout (Oncorhynchus mykiss) CD3ε monoclonal antibody. Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):511-5.  https://doi.org/10.1016/j.vetimm.2011.11.017
 
Bowden TJ, Cook P, Rombout JH. Development and function of the thymus in teleosts. Fish Shellfish Immunol. 2005 Nov;19(5):413-27.  https://doi.org/10.1016/j.fsi.2005.02.003
 
Bunton TE. The immunocytochemistry of cytokeratin in fish tissues. Vet Pathol. 1993 Sep;30(5):418-25. https://doi.org/10.1177/030098589303000503
 
Diaz del Pozo E, Beverley PC, Timon M. Genomic structure and sequence of the leukocyte common antigen (CD45) from the pufferfish Fugu rubripes and comparison with its mammalian homologue. Immunogenetics. 2000 Aug;51(10):838-46.  https://doi.org/10.1007/s002510000214
 
Fonseca VG, Rosa J, Laize V, Gavaia PJ, Cancela ML. Identification of a new cartilage-specific S100-like protein up-regulated during endo/perichondral mineralization in gilthead seabream. Gene Expr Patterns. 2011 Oct;11(7):448-55.  https://doi.org/10.1016/j.gep.2011.07.003
 
Garcia DM, Bauer H, Dietz T, Schubert T, Markl J, Schaffeld M. Identification of keratins and analysis of their expression in carp and goldfish: Comparison with the zebrafish and trout keratin catalog. Cell Tissue Res. 2005 Nov;322(2):245-56.  https://doi.org/10.1007/s00441-005-0031-1
 
Gradil AM, Wright GM, Wadowska DW, Fast MD. Ontogeny of the immune system in Acipenserid juveniles. Dev Comp Immunol. 2014 Jun;44(2):303-14.  https://doi.org/10.1016/j.dci.2014.01.006
 
Herrmann H, Munick MD, Brettel M, Fouquet B, Markl J. Vimentin in a cold-water fish, the rainbow trout: Highly conserved primary structure but unique assembly properties. J Cell Sci. 1996 Mar;109(Pt 3):569-78.
 
Holmes N. CD45: all is not yet crystal clear. Immunology. 2005 Feb;117(2):145-55. https://doi.org/10.1111/j.1365-2567.2005.02265.x
 
Iaria C, Ieni A, Corti I, Puleio R, Brachelente C, Mazzullo G, Lanteri G. Immunohistochemical study of four fish tumors. J Aquat Anim Health. 2019 Mar;31(1):97-106.  https://doi.org/10.1002/aah.10058
 
Kurtin PJ, Pinkus GS. Leukocyte common antigen – A diagnostic discriminant between hematopoietic and nonhematopoietic neoplasms in paraffin sections using monoclonal antibodies: Correlation with immunologic studies and ultrastructural localization. Hum Pathol. 1985 Apr;16(4):353-65. https://doi.org/10.1016/S0046-8177(85)80229-X
 
Mason DY, Cordell J, Brown M, Pallesen G, Ralfkiaer E, Rothbard J, Crumpton M, Gatter KC. Detection of T cells in paraffin wax embedded tissue using antibodies against a peptide sequence from the CD3 antigen. J Clin Pathol. 1989 Nov;42(11):1194-200.  https://doi.org/10.1136/jcp.42.11.1194
 
Mohammad MG, Chilmonczyk S, Birch D, Aladaileh S, Raftos D, Joss J. Anatomy and cytology of the thymus in juvenile Australian lungfish, Neoceratodus forsteri. J Anat. 2007 Dec;211(6):784-97.  https://doi.org/10.1111/j.1469-7580.2007.00814.x
 
Ng AN, de Jong-Curtain TA, Mawdsley DJ, White SJ, Shin J, Appel B, Dong PD, Stainier DY, Heath JK. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol. 2005 Oct 1;286(1):114-35.  https://doi.org/10.1016/j.ydbio.2005.07.013
 
Pan QS, Fang ZP, Zhao YX. Immunocytochemical identification and localization of APUD cells in the gut of seven stomachless teleost fishes. World J Gastroenterol. 2000 Feb;6(1):96-101. https://doi.org/10.3748/wjg.v6.i1.96
 
Peterman AE, Petrie-Hanson L. Ontogeny of American paddlefish lymphoid tissues. J Fish Biol. 2006 Sep;69:72-88. https://doi.org/10.1111/j.1095-8649.2006.01112.x
 
Petrie-Hanson L, Peterman AE. American paddlefish leukocytes demonstrate mammalian-like cytochemical staining characteristics in lymphoid tissues. J Fish Biol. 2005 Apr;66(4):1101-15.  https://doi.org/10.1111/j.0022-1112.2005.00668.x
 
Ramos-Vara JA, Kiupel M, Baszler T, Bliven L, Brodersen B, Chelack B, Czub S, Del Piero F, Dial S, Ehrhart EJ, Graham T, Manning L, Paulsen D, Valli VE, West K; American Association of Veterinary Laboratory Diagnosticians Subcommittee on Standardization of Immunohistochemistry. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagn Invest. 2008 Jul;20(4):393-413.  https://doi.org/10.1177/104063870802000401
 
Raica M, Encica S, Motoc A, Cimpean AM, Scridon T, Barsan M. Structural heterogeneity and immunohistochemical profile of Hassall corpuscles in normal human thymus. Ann Anat. 2006 Jul;188(4):345-52. https://doi.org/10.1016/j.aanat.2006.01.012
 
Salkova E, Flajshans M. The first finding of Hassall’s corpuscles in the thymi of cultured sturgeons. Vet Med-Czech. 2016 Aug;61(8):464-6.  https://doi.org/10.17221/247/2015-VETMED
 
Sandulescu CM, Teow RY, Hale ME, Zhang C. Onset and dynamic expression of S100 proteins in the olfactory organ and the lateral line system in zebrafish development. Brain Res. 2011 Apr 6;1383:120-7.  https://doi.org/10.1016/j.brainres.2011.01.087
 
Schaffeld M, Herrmann H, Schultess J, Markl J. Vimentin and desmin of a cartilaginous fish, the shark Scyliorhinus stellaris: Sequence, expression patterns and in vitro assembly. Eur J Cell Biol. 2001 Nov;80(11):692-702.  https://doi.org/10.1078/0171-9335-00206
 
Schmitz RJ. Immunohistochemical identification of the cytoskeletal elements in the notochord cells of bony fishes. J Morphol. 1998 May;236(2):105-16. https://doi.org/10.1002/(SICI)1097-4687(199805)236:2<105::AID-JMOR2>3.0.CO;2-4
 
Yasumoto S, Koga D, Tanaka K, Kondo M, Takahashi Y. Histopathological and immunohistochemical studies of gonadal undifferentiated carcinoma in common carp Cyprinus carpio. Fish Pathol. 2015;50(2):53-9. https://doi.org/10.3147/jsfp.50.53
 
download PDF

© 2020 Czech Academy of Agricultural Sciences