Examination of white blood cell indicators for three different ploidy level sturgeon species reared in an indoor recirculation aquaculture system for one year

https://doi.org/10.17221/215/2020-VETMEDCitation:

Salkova E, Gela D, Pecherkova P, Flajshans M (2022): Examination of white blood cell indicators for three different ploidy level sturgeon species reared in an indoor recirculation aquaculture system for one year. Vet Med-Czech 67, 138–149.

download PDF

Functional diploid Acipenser ruthenus, functional tetraploid Acipenser gueldenstaedtii and functional hexaploid Acipenser brevirostrum juveniles were sampled monthly for one year, and the white blood cell indicators were determined. The total number of leukocytes (TL) was 40.93 ± 17.24 × 109/l for the diploids, 20.63 ± 11.20 × 109/l for the tetraploids, 14.13 ± 7.72 × 109/l for the hexaploids. The TL decreased with an increasing ploidy level. The highest number of leukocytes was reached during September and October for A. ruthenus and A. brevirostrum, from October to January for A. gueldenstaedtii (a statistically significant finding). The lymphocytes dominated (76.89–80.14%) in the differential counts and were found to be reduced in June and July in each group. Granulocytes were represented by neutrophils and eosinophils. Counting from all the leukocytes, the neutrophils represented 13.0–18.7% and eosinophils represented 5.7–6.1%. Increasing number of nuclear segments in the granulocytes was dependent on the increasing ploidy level. Nuclear segmentation in the lymphocytes was a common finding in higher ploidy level groups. The data suggest a significant effect of ploidy level on the total number of leukocytes and morphological nuclear changes in the granulocytes and lymphocytes. The seasonal variation in the differential leukocyte counts depends on the species and the influence of various external conditions rather than the ploidy level.

References:
Adel M, Palanisamy SK, Shafiei S, Fazli H, Zorriehzahra J. Comparative study of haematological, serum electrolyte and nonelectrolyte parameters of male and female Persian sturgeon (Acipenser persicus) brood stocks. Acta Oceanologica Sinica. 2016;35(8):39-43. https://doi.org/10.1007/s13131-016-0869-y
 
Ainsworth AJ. Fish granulocytes: Morphology, distribution and function. Annu Rev Fish Dis. 1992;2:123-48. https://doi.org/10.1016/0959-8030(92)90060-B
 
Akrami R, Gharaei A, Karami R. Age and sex specific variation in haematological and serum biochemical parameters of Beluga (Huso huso Linnaeus, 1758). Int J Aquat Biol. 2013;1(3):132-7.
 
Bahmani M, Kazemi R, Donskaya P. A comparative study of some haematological features in youngreared sturgeons (Acipenser persicus and Huso huso). Fish Physiol Biochem. 2001;24(2):135-40. https://doi.org/10.1023/A:1011911019155
 
Bani A, Tabarsa M, Falahatkar B, Banan A. Effects of different photoperiods on growth, stress and haematological parameters in juvenile great sturgeon Huso huso. Aquac Res. 2009;40(16):1899-907. https://doi.org/10.1111/j.1365-2109.2009.02321.x
 
Benfey TJ. The physiology and behaviour of triploid fishes. Rev Fish Sci. 1999;7(1):36-67. https://doi.org/10.1080/10641269991319162
 
Beyea MM, Benfey TJ, Kieffer JD. Hematology and stress physiology of juvenile diploid and triploid shortnose sturgeon (Acipenser brevirostrum). Fish Physiol Biochem. 2005;31(4):303-13. https://doi.org/10.1007/s10695-005-1552-y
 
Crow KD, Smith CD, Cheng JF, Wagner GP, Amemiya CT. An independent genome duplication inferred from Hox paralogs in the American paddlefish – A representative basal ray-finned fish and important comparative reference. Genome Biol Evol. 2012;4(9):937-53. https://doi.org/10.1093/gbe/evs067
 
Docan A, Dediu L, Cristea V. Effect of feeding with different dietary protein level on leukocytes population in juvenile Siberian sturgeon, Acipenser baeri Brandt. Archiva Zootechnica. 2012;15(4):59-67.
 
Docan A, Dediu L, Grecu I, Cristea V, Maereanu M. Hematological profiles of mature Acipenser stellatus from Danube river during spring season. Lucr ştiinţ, Ser Zooteh. 2014;62:143-6.
 
Ellis AE. A leukocyte of fish: A review. J Fish Biol. 1977;11(5):453-91. https://doi.org/10.1111/j.1095-8649.1977.tb04140.x
 
Flajshans M, Vajcova V. Odd ploidy levels in sturgeon suggest a backcross of interspecific hybrids to evolutionary tetraploid and/or octaploid parental species. Folia Zool. 2000;49(2):133-8.
 
Flajshans M, Vajcova V. [Differences in haematological indices of sturgeons with different ploidy levels]. In: Halacka K, Lusk S, Luskova V, editors. Biodiverzita ichtyofauny Ceske republiky (IV). Brno: Ústav biologie obratlovců AV ČR; 2002. p. 59-64. Czech.
 
Flajshans M, Psenicka M, Rodina M, Tesitel J. Image cytometric measurements of diploid, triploid and tetraploid fish erythrocytes in blood smears reflect the true dimensions of live cells. Cell Biol Int. 2011 Jan;35(1):67-71. https://doi.org/10.1042/CBI20100198
 
Fopp-Bayat D, Wlasow T, Ziomek E. Haematology of gynogenetic diploids of Siberian sturgeon Acipenser baerii Brandt. Acta Vet Brno. 2013;82(1):81-5. https://doi.org/10.2754/avb201382010081
 
Gharaei A, Rayeni MF, Ghaffari M, Akrami R, Ahmadifar E. Influence of dietary probiotic mixture (α-mune) on growth performance, haematology and innate immunity of Beluga sturgeon (Huso huso) juvenile. Inter J Aquat Biol. 2016;4(4):277-84.
 
Gregory TR, Witt JDS. Population size and genome size in fishes: A closer look. Genome. 2008 Apr;51(4):309-13. https://doi.org/10.1139/G08-003
 
Hardie DC, Hebert PDN. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome. 2003 Aug;46(4):683-706. https://doi.org/10.1139/g03-040
 
Havelka M, Kaspar V, Hulak M, Flajshans M. Sturgeon genetics and cytogenetics: A review related to ploidy levels and interspecific hybridization. J Vertebr Biol. 2011;60(2):93-103. https://doi.org/10.25225/fozo.v60.i2.a3.2011
 
Havelka M, Bytyutskyy D, Symonova R, Rab P, Flajshans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol. 2016;48(1):1-9. https://doi.org/10.1186/s12711-016-0194-0
 
Khandekar G, Kim S, Jagadeeswaran P. Zebrafish thrombocytes: Functions and Origins. Adv Hematol. 2012;(7):857058. https://doi.org/10.1155/2012/857058
 
Knowles S, Hrubec TC, Smith SA, Bakal RS. Hematology and plasma chemistry reference intervals for cultured shortnose sturgeon (Acipenser brevirostrum). Vet Clin Pathol. 2006 Dec;35(4):434-40. https://doi.org/10.1111/j.1939-165X.2006.tb00160.x
 
Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics. 2001 Jul;158(3):1203-15. https://doi.org/10.1093/genetics/158.3.1203
 
Matsche MA, Gibbons J. Annual variation of hematology and plasma chemistry in shortnose sturgeon, Acipenser brevirostrum, during a dam-impeded spawning run. Fish Physiol Biochem. 2012 Dec;38(6):1679-96. https://doi.org/10.1007/s10695-012-9664-7
 
Matsche MA, Rosemary KM, Brundage III HM, O’Herron II JC. Hematology and plasma chemistry of wild shortnose sturgeon Acipenser brevirostrum from Delaware River, USA. J Appl Ichthyol. 2013;29(1):6-14. https://doi.org/10.1111/jai.12050
 
Maxime V. The physiology of triploid fish: Current knowledge and comparison with diploid fish. Fish Fish. 2008;9(1):67-78. https://doi.org/10.1111/j.1467-2979.2007.00269.x
 
Mazandarani M, Taheri Mirghaed A, Hoseini SM. Hematological characteristics and reproduction indices of wild beluga (Huso huso) broodstocks from the southeast of the Caspian Sea. IJVM. 2015;9(1):65-71.
 
Padash-Barmchi Z, Safahieh A, Bahmani M, Savari A, Kazemi R. Immune responses and behavior alterations of Persian sturgeon fingerlings Acipenser persicus exposed to sublethal concentrations of diazinon. Toxicol Environ Chem. 2010;92(1):159-67. https://doi.org/10.1080/02772240902927577
 
Palikova M, Mares J, Jirasek J. Characteristics of leukocytes and thrombocytes of selected sturgeon species from intensive breeding. Acta Vet Brno. 1999;68(4):259-64. https://doi.org/10.2754/avb199968040259
 
Pourgholam R, Saeidi AA. Evaluation of some haematological variables of Acipenser persicus and Acipenser stellatus at different water temperature. IJFS. 2000;2(1):53-8.
 
Rozynski M, Demska-Zakes K, Fopp-Bayat D. Hematological and blood gas profiles of triploid Siberian sturgeon (Acipenser baerii Brandt). Fish Aquat Life (Arch Pol Fish). 2015 Dec;23(4):197-203. https://doi.org/10.1515/aopf-2015-0022
 
Ruchin AB. Effect of photoperiod on growth, physiological and haematological indices of juvenile Siberian sturgeon Acipenser baerii. Biol Bull. 2007;34(6):583-9. https://doi.org/10.1134/S1062359007060088
 
Shahsavani D, Mohri M. Determination of some blood parameters of fingerling sturgeon (Huso huso) in Guilan province of Iran. J Appl Anim Res. 2004;25(2):129-30. https://doi.org/10.1080/09712119.2004.9706490
 
Smith EM, Gregory T. Patterns of genome size diversity in the ray-finned fishes. Hydrobiologia. 2009;625(1):1-25. https://doi.org/10.1007/s10750-009-9724-x
 
Svobodova Z, Pravda D, Modra H. Metody hematologickeho vysetrovani ryb [Unified methods of fish haematological investigations]. Edice metodik. Vodňany: VúURH; 2012. 29 p. Czech.
 
Wlasow T, Fopp-Bayat D. The effect of thermal shock on morphological characteristics of blood cells in Siberian sturgeon (Acipenser baerii) triploids. Acta Vet Brno. 2011;80(2):215-8. https://doi.org/10.2754/avb201180020215
 
Zarejabad AM, Sudagar M, Pouralimotlagh S, Bastami KD. Effects of rearing temperature on haematological and biochemical parameters of great sturgeon (Huso huso Linnaeus, 1758) juvenile. Comp Clin Pathol. 2009;19(4):367-71. https://doi.org/10.1007/s00580-009-0880-1
 
Zarejabad AM, Jalali MA, Sudagar M, Pouralimotlagh S. Hematology of great sturgeon (Huso huso Linnaeus, 1758) juvenile exposed to brackish water environment. Fish Physiol Biochem. 2010 Sep;36(3):655-9. https://doi.org/10.1007/s10695-009-9339-1
 
Zexia G, Weimin W, Yi Y, Abbas K, Dapeng L, Guiwei Z, Diana JS. Morphological studies of peripheral blood cells of the Chinese sturgeon, Acipenser sinensis. Fish Physiol Biochem. 2007;33(3):213-22. https://doi.org/10.1007/s10695-007-9133-x
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti