Effects of bee bread, Cornelian cherries treatment on the femoral bone structure using Zucker diabetic fatty rats as an animal model


Martiniakova M, Blahova J, Kovacova V, Mondockova V, Babosova R, Kalafova A, Capcarova M, Omelka R (2021): Effects of bee bread, Cornelian cherries treatment on the femoral bone structure using Zucker diabetic fatty rats as an animal model. Vet Med-Czech 66, 342–349.

download PDF

This is a pilot study dealing with the reduced femoral bone structure in Zucker diabetic fatty (ZDF) rats following a 10 weeks treatment with bee bread and Cornelian cherries. The adult ZDF rats were divided into 4 groups: the E1 group received bee bread (500 mg/kg b.w. daily), the E2 group received Cornelian cherries (500 mg/kg b.w. per day), the E3 group was simultaneously supplemented by bee bread and Cornelian cherries (500 + 500 mg/kg b.w. daily), and the C group served as an untreated diabetic control. A non-significant decrease in the blood glucose, total cholesterol, triglyceride concentrations, ALP activity and a non-significant increase in the insulin, total body weight of the ZDF rats, femoral length and weight were observed in the E1, E2, and E3 groups. The treatments had no impact on the relative volume of the cortical bone, bone mineral density, bone surface and cortical bone thickness. On the contrary, the relative volume of the trabecular bone, trabecular thickness and trabecular bone surface were significantly increased in the E1 group. The relative volume of the trabecular bone and trabecular thickness were significantly elevated in the E2 group. In the E3 group, the trabecular thickness was found to have significantly increased. Single administrations of either bee bread or Cornelian cherries had more positive effects on the trabecular bone microarchitecture in the ZDF rats than the simultaneous supplementation.

Al-Awar A, Kupai K, Veszelka M, Szucs G, Attieh Z, Murlasits Z, Torok S, Posa A, Varga C. Experimental diabetes mellitus in different animal models. J Diabetes Res. 2016;2016:9051426. https://doi.org/10.1155/2016/9051426
Basu A. Role of berry bioactive compounds on lipids and lipoproteins in diabetes and metabolic syndrome. Nutrients. 2019 Aug 22;11(9):1983. https://doi.org/10.3390/nu11091983
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010 Jul;25(7):1468-86. https://doi.org/10.1002/jbmr.141
Capcarova M, Kalafova A, Schwarzova M, Schneidgenova M, Svik K, Prnova MS, Slovak L, Kovacik A, Lory V, Zorad S, Brindza J. Cornelian cherry fruit improves glycaemia and manifestations of diabetes in obese Zucker diabetic fatty rats. Res Vet Sci. 2019 Oct;126:118-23. https://doi.org/10.1016/j.rvsc.2019.08.024
Capcarova M, Kalafova A, Schwarzova M, Scheindgenova M, Soltesova Prnova M, Svik K, Slovak L, Kisska P, Kovacik A, Brindza J. Consumption of bee bread influences glycaemia and development of diabetes in obese spontaneous diabetic rats. Biologia. 2020 May;75(5):705-11. https://doi.org/10.2478/s11756-019-00337-5
Chen SC, Tsai SP, Jhao JY, Jiang WK, Tsao CK, Chang LY. Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: A prospective study of 132,377 adults. Sci Rep. 2017 Jul 5;7(1):4649. https://doi.org/10.1038/s41598-017-04631-7
De Biaggi M, Donno D, Mellano MG, Riondato I, Rakotoniaina EN, Beccaro GL. Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: Physico-chemical characterisation of bioactive components. Plant Foods Hum Nutr. 2018 Jun;73(2):89-94. https://doi.org/10.1007/s11130-018-0663-4
Erejuwa OO, Nwobodo NN, Akpan JL, Okorie UA, Ezeonu CT, Ezeokpo BC, Nwadike KI, Erhiano E, Abdul Wahab MS, Sulaiman SA. Nigerian honey ameliorates hyperglycemia and dyslipidemia in alloxan-induced diabetic rats. Nutrients. 2016 Feb 24;8(3):95. https://doi.org/10.3390/nu8030095
Garnett KE, Chapman P, Chambers JA, Waddell ID, Boam DS. Differential gene expression between Zucker Fatty rats and Zucker Diabetic Fatty rats: A potential role for the immediate-early gene Egr-1 in regulation of beta cell proliferation. J Mol Endocrinol. 2005 Aug;35(1):13-25. https://doi.org/10.1677/jme.1.01792
Hanley AJ, Williams K, Festa A, Wagenknecht LE, D’Agostino RB Jr, Kempf J, Zinman B, Haffner SM. Elevations in markers of liver injury and risk of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes. 2004 Oct;53(10):2623-32. https://doi.org/10.2337/diabetes.53.10.2623
Lapmanee S, Charoenphandhu N, Aeimlapa R, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Chaimongkolnukul K, Seriwatanachai D, Krishnamra N. High dietary cholesterol masks type 2 diabetes-induced osteopenia and changes in bone microstructure in rats. Lipids. 2014 Oct;49(10):975-86. https://doi.org/10.1007/s11745-014-3950-3
Li J, Bao Q, Chen S, Liu H, Feng J, Qin H, Li A, Liu D, Shen Y, Zhao Y, Zong Z. Different bone remodeling levels of trabecular and cortical bone in response to changes in Wnt/β-catenin signaling in mice. J Orthop Res. 2017 Apr;35(4):812-9. https://doi.org/10.1002/jor.23339
Margaoan R, Strant M, Varadi A, Topal E, Yucel B, Cornea-Cipcigan M, Campos MG, Vodnar DC. Bee collected pollen and bee bread: Bioactive constituents and health benefits. Antioxidants (Basel). 2019 Nov 20;8(12):568. https://doi.org/10.3390/antiox8120568
Martiniakova M, Bobonova I, Omelka R, Duranova H, Babosova R, Stawarz R, Toman R. Low administration of bee pollen in the diet affects qualitative histological characteristics of bone in male rats. Potravinarstvo Slovak J Food Sci. 2014 Nov;8(1):277-83. https://doi.org/10.5219/396
Nannipieri M, Gonzales C, Baldi S, Posadas R, Williams K, Haffner SM, Stern MP, Ferrannini E. Liver enzymes, the metabolic syndrome, and incident diabetes: The Mexico City diabetes study. Diabetes Care. 2005 Jul;28(7):1757-62.  https://doi.org/10.2337/diacare.28.7.1757
Park CH, Noh JS, Tanaka T, Yokozawa T. Effects of morroniside isolated from Corni Fructus on renal lipids and inflammation in type 2 diabetic mice. J Pharm Pharmacol. 2010 Mar;62(3):374-80. https://doi.org/10.1211/jpp.62.03.0013
Sen S, Chakraborty R. Treatment and diagnosis of diabetes mellitus and its complication: Advanced approaches. Mini Rev Med Chem. 2015;15(14):1132-3. https://doi.org/10.2174/138955751514151006154616
Shah VN, DiMeglio LA. Sweet bones: Diabetes effects on bone. In: Burr DB, Allen MR, editors. Basic and applied bone biology. 2nd ed. London: Academic Press, Elsevier; 2019. p. 425-41.
Shamsi F, Asgarari S, Rafieian S, Kazemi S, Adelnia A. Effect of Cornus mas L. on blood glucose, insulin and histophatology of pancreas in alloxan-induces diabetic rats. J Isfahan Medic School. 2011 Sep;29(147):929-38.
Shimizu S, Matsushita H, Morii Y, Ohyama Y, Morita N, Tachibana R, Watanabe K, Wakatsuki A. Effect of anthocyanin-rich bilberry extract on bone metabolism in ovariectomized rats. Biomed Rep. 2018 Feb;8(2):198-204. https://doi.org/10.3892/br.2017.1029
Sobral F, Calhelha RC, Barros L, Duenas M, Tomas A, Santos-Buelga C, Vilas-Boas M, Ferreira IC. Flavonoid composition and antitumor activity of bee bread collected in northeast Portugal. Molecules. 2017 Feb 7;22(2):248. https://doi.org/10.3390/molecules22020248
Soltani R, Gorji A, Asgary S, Sarrafzadegan N, Siavash M. Evaluation of the effects of Cornus mas L. fruit extract on glycemic control and insulin level in type 2 diabetic adult patients: A randomized double-blind placebo-controlled clinical trial. Evid Based Complement Alternat Med. 2015;2015:740954. https://doi.org/10.1155/2015/740954
Yudaniayanti IS, Primarizky H, Nangoi L, Yuliani GA. Protective effects of honey by bees (Apis dorsata) on decreased cortical thickness and bone impact strength of ovariohysterectomized rats as models for menopause. Vet World. 2019 Jun;12(6):868-76.  https://doi.org/10.14202/vetworld.2019.868-876
Zaid SS, Sulaiman SA, Othman NH, Soelaiman IN, Shuid AN, Mohamad N, Muhamad N. Protective effects of Tualang honey on bone structure in experimental postmenopausal rats. Clinics (Sao Paulo). 2012 Jul;67(7):779-84. https://doi.org/10.6061/clinics/2012(07)13
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti