Comparative effectiveness of interventions for treating interdigital necrobacillosis in cattle: A network meta-analysis

https://doi.org/10.17221/232/2020-VETMEDCitation:

Torehanov MA, Tulemissova ZK, Ibazhanova AS, Rafikova ER, Muzapbarov B, Korabaev EM, Siyabekov ST (2021): Comparative effectiveness of interventions for treating interdigital necrobacillosis in cattle: A network meta-analysis. Vet Med-Czech 66, 461–469.

download PDF

The aim of this study was to comparatively evaluate the efficacy of different antimicrobial agents against interdigital necrobacillosis (IN) in cattle to identify the treatment with the greatest benefit. A network meta-analysis was used to synthesise empirical results from randomised controlled trials. Four studies with five interventions for 565 animals were included. The meta-analysis found no significant differences between the risk ratios for the antimicrobials versus placebo. However, ceftiofur sodium administered intramuscularly at a dose of 1.0 µg/kg body weight every 24 h for 3 days showed a better clinical response than 6.6 µg of oxytetracycline, 2.5 µg of tulathromycin, the placebo and 0.1 µg of ceftiofur sodium. The results show the best efficacy for 6.6 µg of oxytetracycline and 1.0 µg of ceftiofur sodium. Nevertheless, the latter is likely to be superior to oxytetracycline in terms of its pharmacodynamic and pharmacokinetic properties. Thus, 1.0 µg of ceftiofur sodium appears to provide the best therapeutic activity against IN in cattle. Further well-designed studies are required.

References:
Afonso JS, Bruce M, Keating P, Raboisson D, Clough H, Oikonomou G, Rushton J. Profiling detection and classification of lameness methods in British dairy cattle research: A systematic review and meta-analysis. Front Vet Sci. 2020 Aug 20;7:542. https://doi.org/10.3389/fvets.2020.00542
 
Akyol C, Ince O, Cetecioglu Z, Alkan FU, Ince B. The fate of oxytetracycline in two-phase and single-phase anaerobic cattle manure digesters and its effects on microbial communities. J Chem Technol Biotechnol. 2016 Mar;91(3):806-14. https://doi.org/10.1002/jctb.4649
 
Allworth MB, Egerton JR. Comparison of footbathing and vaccination to control ovine footrot in an experimentally infected flock. Aust Vet J. 2018 Oct;96(10):395-9. https://doi.org/10.1111/avj.12715
 
Altan F, Uney K, Er A, Cetin G, Dik B, Yazar E, Elmas M. Pharmacokinetics of ceftiofur in healthy and lipopolysaccharide-induced endotoxemic newborn calves treated with single and combined therapy. J Vet Med Sci. 2017 Jul;79(7):1245-52.
 
Angell JW, Grove-White DH, Williams HJ, Duncan JS. Whole-flock, metaphylactic tilmicosin failed to eliminate contagious ovine digital dermatitis and footrot in sheep: A cluster randomised trial. Vet Rec. 2016 Sep 24;179(12):308. https://doi.org/10.1136/vr.103625
 
Apley MD. Clinical evidence for individual animal therapy for papillomatous digital dermatitis (hairy heel wart) and infectious bovine pododermatitis (foot rot). Vet Clin North Am Food Anim Pract. 2015 Mar;31(1):81-95. https://doi.org/10.1016/j.cvfa.2014.11.009
 
Bauer BU, Rapp C, Mulling CK, Meissner J, Vogel C, Humann-Ziehank E. Influence of dietary zinc on the claw and interdigital skin of sheep. J Trace Elem Med Biol. 2018 Dec;50:368-76.
 
Bay V, Griffiths B, Carter S, Evans NJ, Lenzi L, Bicalho RC, Oikonomou G. 16S rRNA amplicon sequencing reveals a polymicrobial nature of complicated claw horn disruption lesions and interdigital phlegmon in dairy cattle. Sci Rep. 2018 Oct;8(1):1-12. https://doi.org/10.1038/s41598-018-33993-9
 
Booth CJ, Warnick LD, Grohn YT, Maizon DO, Guard CL, Janssen D. Effect of lameness on culling in dairy cows. J Dairy Sci. 2004 Dec;87(12):4115-22. https://doi.org/10.3168/jds.S0022-0302(04)73554-7
 
Cha E, Hertl JA, Bar D, Grohn YT. The cost of different types of lameness in dairy cows calculated by dynamic programming. Prev Vet Med. 2010 Oct 1;97(1):1-8. https://doi.org/10.1016/j.prevetmed.2010.07.011
 
Clements RH, Stoye SC. The ‘Five Point Plan’: A successful tool for reducing lameness in sheep. Vet Rec. 2014 Sep 6;175(9):225-7. https://doi.org/10.1136/vr.102161
 
Davis-Unger J, Schwartzkopf-Genswein KS, Pajor EA, Hendrick S, Marti S, Dorin C, Orsel K. Prevalence and lameness-associated risk factors in Alberta feedlot cattle. Transl Anim Sci. 2019 Mar 13;3(2):595-606. https://doi.org/10.1093/tas/txz008
 
Dendani-Chadi Z, Saidani K, Dib L, Zeroual F, Sammar F, Benakhla A. Univariate associations between housing, management, and facility design factors and the prevalence of lameness lesions in fourteen small-scale dairy farms in Northeastern Algeria. Vet World. 2020 Mar 27;13(3):570-8. https://doi.org/10.14202/vetworld.2020.570-578
 
Depenbrock SM, Simpson KM, Niehaus AJ, Lakritz J, Papich MG. Pharmacokinetics of ampicillin-sulbactam in serum and synovial fluid samples following regional intravenous perfusion in the distal portion of a hind limb of adult cattle. Am J Vet Res. 2017 Dec;78(12):1372-9. https://doi.org/10.2460/ajvr.78.12.1372
 
Desrochers A. Musculoskeletal system medicine. In: Anderson D, Rings M, editors. Current veterinary therapy. Philadelphia, USA: Saunders; 2008. p. 222-73.
 
Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE. NICE DSU technical support document 4: Inconsistency in networks of evidence based on randomised controlled trials [Internet]. 2014 [cited 2020 Dec 4]. Available from: http://nicedsu.org.uk/wp-content/uploads/2016/03/TSD4-Inconsistency.final_.15April2014.pdf.
 
Dolecheck KA, Dwyer RM, Overton MW, Bewley JM. A survey of United States dairy hoof care professionals on costs associated with treatment of foot disorders. J Dairy Sci. 2018 Sep;101(9):8313-26. https://doi.org/10.3168/jds.2018-14718
 
Doster E, Rovira P, Noyes NR, Burgess BA, Yang X, Weinroth MD, Lakin SM, Dean CJ, Linke L, Magnuson R, Jones KI, Boucher C, Ruiz J, Belk KE, Morley PS. Investigating effects of tulathromycin metaphylaxis on the fecal resistome and microbiome of commercial feedlot cattle early in the feeding period. Front Microbiol. 2018 Jul 30;9:1715. https://doi.org/10.3389/fmicb.2018.01715
 
FDA – Food and Drug Administration. Freedom of information summary: NADA 140-338 NAXCEL® sterile powder – Supplemental approval [Internet]. 1995 Aug 24 [cited 2020 Dec 4]. Available from: https://wayback.archive-it.org/7993/20171103002155/https://www.fda.gov/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/ucm049774.htm.
 
FDA – Food and Drug Administration. NADA 141-063 NUFLOR injectable solution (florfenicol) – Original new animal drug application [Internet]. 1999 Jan 14 [cited 2020 Dec 4]. Available from: https://wayback.archive-it.org/7993/20170722233704/https://www.fda.gov/downloads/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/ucm116742.pdf.
 
FDA – Food and Drug Administration. NADA 141-288 EXCENEL RTU EZ sterile suspension – Original new animal drug application [Internet]. 2008a Jul 1 [cited 2020 Dec 4]. Available from: https://wayback.archive-it.org/7993/20170406084516/https://www.fda.gov/downloads/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/UCM208544.pdf.
 
FDA – Food and Drug Administration. NADA 141-244 DRAXXIN injectable solution – Supplemental approval [Internet]. 2008b Aug 28 [cited 2020 Dec 4]. Available from: https://wayback.archive-it.org/7993/20170722234205/https://www.fda.gov/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/ucm080277.htm.
 
Gesek M, Sokol R, Welenc J, Tylicka Z, Korzeniowska P, Kozlowska A, Malgorzata WA, Otrocka-Domagala I. Histopathological observations of the internal organs during toltrazuril (Baycox) treatment against naturally occurring coccidiosis in Japanese quail. Pak Vet J. 2015;35(4):479-83.
 
Hespanhol L, Vallio CS, Costa LM, Saragiotto BT. Understanding and interpreting confidence and credible intervals around effect estimates. Braz J Phys Ther. 2019 Jul-Aug;23(4):290-301. https://doi.org/10.1016/j.bjpt.2018.12.006
 
Hidber T, Pauli U, Steiner A, Kuhnert P. In vitro and ex vivo testing of alternative disinfectants to currently used more harmful substances in footbaths against Dichelobacter nodosus. PLoS One. 2020 Feb 13;15(2):e0229066. https://doi.org/10.1371/journal.pone.0229066
 
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions. 2nd ed. Chichester, UK: John Wiley & Sons; 2019. 700 p.
 
Holman DB, Yang W, Alexander TW. Antibiotic treatment in feedlot cattle: A longitudinal study of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota. Microbiome. 2019 Jun 5;7:1-14. https://doi.org/10.1186/s40168-019-0696-4
 
Ibrahim M, Ahmad F, Yaqub B, Ramzan A, Imran A, Afzaal M, Mirza SA, Mazhar I, Younus M, Akram Q, Taseer MSA, Ahmad A, Ahmed S. Current trends of antimicrobials used in food animals and aquaculture. In: Hashmi MZ, editor. Antibiotics and antimicrobial resistance genes in the environment. Amsterdam, Netherlands; Cambridge, MA: Elsevier; 2020. p. 39-69.
 
Islam MD, Runa RA, Alam MM. Prevalence and risk factors analysis of bovine foot diseases in certain milk pocket areas of Sirajganj district, Bangladesh. Vet Sci Res Rev. 2020 Jun 15;6(2):73-9. https://doi.org/10.17582/journal.vsrr/2020/6.2.73.79
 
Kilic N, Ceylan A, Serin I, Gokbulut C. Possible interaction between lameness, fertility, some minerals, and vitamin E in dairy cows. Bull Vet Inst Pulawy. 2007 Sep;51(3):425-9.
 
Kontturi M, Junni R, Simojoki H, Malinen E, Seuna E, Klitgaard K, Kujala-Wirth M, Soveri T, Pelkonen S. Bacterial species associated with interdigital phlegmon outbreaks in Finnish dairy herds. BMC Vet Res. 2019 Jan 29;15:1-12. https://doi.org/10.1186/s12917-019-1788-x
 
Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin. 2009 Dec 1;23(4):791-815. https://doi.org/10.1016/j.idc.2009.06.008
 
Lhermie G, Tauer LW, Grohn YT. The farm cost of decreasing antimicrobial use in dairy production. PLoS One. 2018 Mar 22;13(3):e0194832. https://doi.org/10.1371/journal.pone.0194832
 
Lovatt F, Duncan J, Hinde D. Responsible use of antibiotics on sheep farms: Application at farm level. In Pract. 2019 Jan 23;41(1): 23-33. https://doi.org/10.1136/inp.k5370
 
Masika PJ, Afolayan AJ. An ethnobotanical study of plants used for the treatment of livestock diseases in the Eastern Cape Province, South Africa. Pharm Biol. 2003;41(1):16-21. https://doi.org/10.1076/phbi.41.1.16.14694
 
Mishra PP, Sonu J, Gupta RK, Bhoopendra S, Singh VK, Singh H. Prevalence of hoof disorders in cattle in Ayodhya district of Uttar Pradesh, India. J Exp Zool India. 2020;23(2):1341-50.
 
Morck DW, Olson ME, Louie TJ, Koppe A, Quinn B. Comparison of ceftiofur sodium and oxytetracycline for treatment of acute interdigital phlegmon (foot rot) in feedlot cattle. J Am Vet Med Assoc. 1998 Jan 15;212(2):254-7.
 
Mrad AB, Delcroix V, Piechowiak S, Leicester P, Abid M. An explication of uncertain evidence in Bayesian networks: Likelihood evidence and probabilistic evidence. Appl Intell. 2015 Jun 20;43(4):802-24. https://doi.org/10.1007/s10489-015-0678-6
 
Nie H, Feng X, Peng J, Liang L, Lu C, Tiwari RV, Tang S, He J. Comparative pharmacokinetics of ceftiofur hydrochloride and ceftiofur sodium after administration to water buffalo (Bubalus bubalis). Am J Vet Res. 2016 Jun;77(6):646-52. https://doi.org/10.2460/ajvr.77.6.646
 
O’Connor AM, Hu D, Totton SC, Scott N, Winder CB, Wang B, Wang C, Glanville J, Wood H, White B, Larson R, Waldner C, Sargeant JM. A systematic review and network meta-analysis of injectable antibiotic options for the control of bovine respiratory disease in the first 45 days post arrival at the feedlot. Anim Health Res Rev. 2019 Dec;20(2):163-81. https://doi.org/10.1017/S1466252320000031
 
Oberbauer AM, Berry SL, Belanger JM, McGoldrick RM, Pinos-Rodriquez JM, Famula TR. Determining the heritable component of dairy cattle foot lesions. J Dairy Sci. 2013 Jan;96(1):605-13. https://doi.org/10.3168/jds.2012-5485
 
Owen RK, Bradbury N, Xin Y, Cooper N, Sutton A. MetaInsight: An interactive web-based tool for analyzing, interrogating, and visualizing network meta-analyses using R-shiny and netmeta. Res Synth Methods. 2019 Dec;10(4):569-81. https://doi.org/10.1002/jrsm.1373
 
Ozsvari L. Economic cost of lameness in dairy cattle herds. J Dairy Vet Anim. 2017 Dec 15;6(2):1-8. https://doi.org/10.15406/jdvar.2017.06.00176
 
Papich MG, Riviere JE. Tetracycline antibiotics. In: Riviere JE, Papich MG, editors. Veterinary pharmacology and therapeutics. Hoboken, New Jersey, USA: John Wiley & Sons; 2018. p. 858-76.
 
Papich MG. Sulfonamides and potentiated sulfonamides. In: Riviere JE, Papich MG, editors. Veterinary pharmacology and therapeutics. Hoboken, New Jersey, USA: John Wiley & Sons; 2018. p. 796-825.
 
Persson Y, Mork MJ, Pringle M, Bergsten C. A case-series report on the use of a salicylic acid bandage as a non-antibiotic treatment for early detected, non-complicated interdigital phlegmon in dairy cows. Animals. 2019 Apr;9(4):129.
 
Poapolathep S, Klangkaew N, Phaochoosak N, Wongwaipairoj T, Giorgi M, Chaiyabutr N, Trott DJ, Poapolathep A. Pharmacokinetics of a long-acting formulation of oxytetracycline in freshwater crocodiles (Crocodylus siamensis) after intramuscular administration at three different dosages. Animals. 2020 Aug;10(8):1281. https://doi.org/10.3390/ani10081281
 
Ramanoon SZ, Sadiq MB, Razak NMA, Mansor R, Syed-Hussain SS, Mossadeq WS. Lameness cases in cattle reported to the University Veterinary Hospital, Universiti Putra Malaysia from 2013 to 2017. J Vet Malaysia. 2018 Jul;30(1):1-6.
 
Rutenberg D, Venner M, Giguere S. Efficacy of tulathromycin for the treatment of foals with mild to moderate bronchopneumonia. J Vet Intern Med. 2017 May-Jun;31(3):901-6. https://doi.org/10.1111/jvim.14717
 
Samitz EM, Jang SS, Hirsh DC. In vitro susceptibilities of selected obligate anaerobic bacteria obtained from bovine and equine sources to ceftiofur. J Vet Diagn Invest. 1996 Jan;8(1):121-3. https://doi.org/10.1177/104063879600800122
 
Schrag NF, Godden SM, Apley MD, Singer RS, Lubbers BV. Antimicrobial use quantification in adult dairy cows – Part 3 – Use measured by standardized regimens and grams on 29 dairies in the United States. Zoonoses Public Health. 2020 Nov;67(S1):82-93. https://doi.org/10.1111/zph.12773
 
Scott DW. Skin diseases. In: Peek SF, Divers TJ, editors. Rebhun’s diseases of dairy cattle. Philadelphia, USA: Saunders; 2018. p. 357-88.
 
Sheldon IM, Bushnell M, Montgomery J, Rycroft AN. Minimum inhibitory concentrations of some antimicrobial drugs against bacteria causing uterine infections in cattle. Vet Rec. 2004 Sep 25;155(13):383-7. https://doi.org/10.1136/vr.155.13.383
 
Sneeringer S, Short G, MacLachlan M, Bowman M. Impacts on livestock producers and veterinarians of FDA policies on use of medically important antibiotics in food animal production. Appl Econ Perspect Policy. 2020 Dec;42(4):674-94. https://doi.org/10.1002/aepp.13057
 
Soares GMS, Figueiredo LC, Faveri M, Cortelli SC, Duarte PM, Feres M. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. J Appl Oral Sci. 2012 May-Jun;20(3):295-309. https://doi.org/10.1590/S1678-77572012000300002
 
Strobel H, Hilke J, Spengler D, Axt H, Ganter M, Voigt K. Klaueninfektionen beim Schaf-Therapiemoglichkeiten in der tierarztlichen Praxis unter besonderer Beruck sichtigung der Moderhinkebekampfung [Claw infections in sheep – Treatment options in veterinary practice, with special emphasis on ovine footrot treatment]. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2018;46(6):385-8. German. https://doi.org/10.15653/TPG-180285
 
Tulemissova ZK, Torehanov MA, Myktybayeva RZ, Ibazhanova AS, Khussainov DM, Batanova ZM, Usmangaliyeva SS. Comparison of probiotic Lactobacillus acidophilus and oxytetracycline for the treatment of early stage interdigital necrobacillosis in dairy cows. World’s Vet J. 2020 Sep 25;10(3):375-9. https://doi.org/10.36380/scil.2020.wvj46
 
Van Metre DC. Pathogenesis and treatment of bovine foot rot. Vet Clin North Am Food Anim Pract. 2017 Jul 1;33(2):183-94. https://doi.org/10.1016/j.cvfa.2017.02.003
 
Winder CB, Sargeant JM, Hu D, Wang C, Kelton DF, Godkin MA, Churchill KJ, O’Connor AM. Comparative efficacy of antimicrobials for treatment of clinical mastitis in lactating dairy cattle: A systematic review and network meta-analysis. Anim Health Res Rev. 2019 Dec;20(2):229-46. https://doi.org/10.1017/S1466252319000318
 
Zhou Q, Zhang G, Wang Q, Liu W, Huang Y, Yu P, Li Y, Ding H, Fang B. Pharmacokinetic/pharmacodynamic modeling of tulathromycin against Pasteurella multocida in a porcine tissue cage model. Front Pharmacol. 2017a Jun;8:1-11. https://doi.org/10.3389/fphar.2017.00392
 
Zhou YF, Peng HM, Bu MX, Liu YH, Sun J, Liao XP. Pharmacodynamic evaluation and PK/PD-based dose prediction of tulathromycin: A potential new indication for Streptococcus suis infection. Front Pharmacol. 2017b Sep 27;8:1-9. https://doi.org/10.3389/fphar.2017.00684
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti