Progressive trends on the application of artificial neural networks in animal sciences – A review

Bauer EA (2022): Progressive trends on the application of artificial neural networks in animal sciences – A review. Vet Med-Czech 67, 219–230.

download PDF

In recent years, artificial neural networks have become the subject of intensive research in a number of scientific areas. The high performance and operational speed of neural models open up a wide spectrum of applications in various areas of life sciences. Objectives pursued by many scientists, who use neural modelling in their research, focus – among others – on intensifying real-time calculations. This study shows the possibility of using Multilayer-Perceptron (MLP) and Radial Basis Function (RBF) models of artificial neural networks for the future development of new methods for animal science. The process should be explained explicitly to make the MLP and RBF models more readily accepted by more researchers. This study describes and recommends certain models as well as uses forecasting methods, which are represented by the chosen neural network topologies, in particular MLP and RBF models for more successful operations in the field of animals sciences.

Adamczyk K, Molenda K, Szarek J, Skrzynski GC. Prediction of bulls’ slaughter value from growth data using artificial neural network. J Cen Euro Agric. 2005;6(2):133-42.
Alsmadi S, Omar B, Noah A. Back propagation algorithm: The best algorithm among the multi-layer perceptron algorithm. J Comp Sci Net Security. 2009;9(4):378-83.
Amit D. Modeling brain functions: The world of attractor neural networks. Cambridge: Cambridge University Press; 1989. 504 p.
Anderson JA, Rosenfeld E. Neurocomputing – Foundations of research. Cambridge (Mass), London (GB): MIT Press; 1988. 729 p.
Aruwayo A, Ahmed Ks, Muhammad IR. Ruminant production and nutrition chemical composition of some selected non-conventional feed resources katsina. 8th Asan-Nias Joint Annual Meeting; Sep 8-12; 2020; p. 1096-8.
Asht S, Dass R. Pattern recognition techniques: A review. Int J Comput Sci Telecomm. 2012;3(8): 25-9.
Bala R, Kumar D. Classification using ANN: A review. Int J Comput Intell Res. 2017;13(7):1811-20.
Bauer EA, Zychlinska-Buczek J. Oszacowanie wplywu okreslonych skladnikow mleka na koncentracje mocznika przy zastosowaniu sztucznych sieci neuronowych [Estimating the effect of some milk components on urea concentration using artificial neural networks]. W Zoot. 2017;3:56-63. Polish.
Bengio Y. Learning deep architecture for AI. Found Trends Mach Learn. 2009;2(1):1-127.
Biecek P, Burzykowski T. Explanatory model analysis: Explore, explain and examine predictive models. 1st ed. New York, USA: Chapman and Hall/CRC; 2021. 309 p.
Bishop A. Neural networks for pattern recognition. New York: Oxford University Press; 1995. 482 p.
Brown-Brandl T, Jones DD, Woldt W. Evaluating modeling techniques for cattle heat stress prodiction. Bio Eng. 2005;91(4):513-24.
Churchland PS, Sejnowski TJ. The computational brain. Cambridge (Mass): MIT Press; 1992. 544 p.
Craninx M, Vlaeminck B, Fievez V. Artificial neural networks to model the rumen fermentation pattern in dairy cattle. Commun Agric Appl Biol Sci. 2008;60(2):226-38.
Davoodi E, Khanteymoori AR. Horse racing prediction using artificial neural networks. Recent advances in neural networks, fuzzy systems & evolutionary computing. Proceedings of the 11th WSEAS International Conference on Neural Networks (NN›10); Proceedings of the 11th WSEAS International Conference on Evolutionary Computing (EC›10); Proceedings of the 11th WSEAS International Conference on Fuzzy Systems (FS›10); "G. Enescu" University, Iasi, Romania; 2010 Jun 13-15; [Wisconsin, USA]: WSEAS Press; 2010. p. 155-60.
Dong R, Zhao G. The use of artificial neural network for modeling in vitro rumen methane production using the CNCPS carbohydrate fractions as dietary variables. Livest Sci. 2014 Apr;162:159-67.
Eksteen S, Breetzke GD. Predicting the abundance of African horses sickness vectors in South Africa using GIS and artificial neural networks. South Afr J Sci. 2011 Jul;107(7-8):1-8.
Fatehi F, Zali A, Honarvar M, Dehghan-Banadaky M, Young AJ, Ghiasvand M, Eftekhari M. Review of the relationship between milk urea nitrogen and days in milk, parity, and monthly temperature mean in Iranian Holstein cows. J Dairy Sci. 2012 Sep;95(9):5156-63.
Fernandez H, Hughes S, Vigne JD, Helmer D, Hodgins G, Miquel C, Hanni C, Luikart G, Taberlet P. Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas. Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15375-9.
Goyal S. Artificial neural networks for dairy industry: A review. J Adv Comput Sci Tech. 2012;1(3):101-15.
Gorska T, Grabowska A, Zagrodzka J. Mozg a zachowanie [Brain and behavior]. Warszawa: Wydaw. Naukowe PWN; 1997. 514 p. Polish.
Grzesiak W, Blaszczyk P, Lacroix R. Methods of predicting milk yield in dairy cows – Predictive capabilities of Wood’s lactation curve and artificial neural networks (ANNs). Comput Electron Agric. 2006;54(2):69-83.
Grzesiak W, Zaborski D, Sablik P, Zukiewska A, Dybus A, Szatkowska I. Detection of cows with insemination problems using selected classification models. Comput Electron Agric. 2010;74(2):265-73.
Gulinski P, Mlynek K, Salamonczyk E. Zmiany zawartosci mocznika w mleku w zaleznosci od wybranych czynnikow srodowiskowych [Milk urea concetration changes depending on selected environmental factors]. Med Weter. 2008;64(4):465-8. Polish.
Gupta RK, Lathwal SS, Mohanty TK, Ruhli AP, Singh Y. Detection of lameness of cows based on body weight using artificial neural network. 2014 International Conference on Computing for Sustainable Global Development (INDIACom); IEEE; 2014. p. 337-41.
Gurney K. An introduction to neural networks. Hoboken: CRC Press; 2014. 148 p.
Han J, Kamber M, Pei J. Data mining: Concepts and techniques. Waltham, MA: Morgan Kaufmann/Elsevier; 2012. 703 p.
Heald CW, Kim T, Sischo WM, Cooper JB, Wolfgang DR. A computerized mastitis decision aid using farm-based records: An artificial neural network approach. J Dairy Sci. 2000 Apr;83(4):711-20.
Hebb DO. The organization of behaviour: A neuro-psychological theory. New York: Wiley; 1949. 335 p.
Hecht-Nielsen R. Theory of the backpropagation neural network. International Joint Conference on Neural Networks. IEEE; 1989. p. 593-605.
Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8.
Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory and applications. Neurocomputing. 2006;70(1-3):489-501.
Ince D, Sofu A. Estimation of lactation milk yield of Awassi sheep with artificial neural network modeling. Small Rumin Res. 2013;113(1):15-9.
Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: A tutorial. Computer (Long Beach Calif). 1996;29(3):31-44.
Jedrus A, Nizewski P, Lipinski M, Boniecki P. Neuronowa analiza wplywu sposobu doju i wybranych cech zootechnicznych krow na liczbe komorek somatycznych w mleku [Neuron analysis of the influence of the way of milking and selected characteristsics of cows on somatic cell count in milk]. Tech Rol Ogrod Leśna. 2008;4:22-4. Polish.
Kamilaris A, Prenafeta-Boldu FX. Deep learning in agriculture: A survey. Comput Electron Agric. 2018;147:70-90.
Karadas K, Tariq M, Tariq MM, Eyduran E. Measuring predictive preformance of data mining and artificial neural network algorithms for predicting lactation milk field in indigenouns Akkaraman sheep. Pak J Zool. 2017;49(1):1-7.
Korbicz J, Obuchowicz A, Ucinski D. Sztuczne sieci neuronowe: Podstawy i zastosowania. Warszawa, Poland: Akademicka Oficyna Wydawnicza PLJ; 1994. 251 p.
Li MM, Sengupta S, Hanigan MD. Using artificial neural networks to predict pH, ammonia, and volatile fatty acid concentrations in the rumen. J Dairy Sci. 2019 Oct;102(10):8850-61.
Li H, Ding S. Research and development of granular neural networks. Appl Math Inf Sci. 2013;7(3):1251-61.
Luger G, Stubblefield W. Artificial intelligence: Structures and strategies for complex problem solving. 5th ed. Amsterdam: The Benjamin/Cummings Publishing Company, Inc; 2004. 928 p.
Mertens K, Vangeyete J, Van Weyenberg S, De Campeneere S, Van Nuffel A. Automatic lameness detection in dairy cows using artificial neural networks. Proceedings of the Power and Machinery. International Conference of Agricultural Engineering – CIGR-AgEng; Valencia, Spain; Jul 8-12; 2012.
McCullogh WS, Pitts WH. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5(4):115-33.
Minsky M, Papert S. Perceptrons: An introduction to computational geometry. London, England: MIT Press; 1969. 258 p.
Moyo M, Gueguim Kana EB, Nsahlai VI. Modeling of digesta passage rates in grazing and browsing domestic and wild ruminant herbivores. S Afr J Anim Sci. 2017;47(3):362-77.
Moyo M, Nsahlai IV. Rate of passage of digesta in ruminants; Are goats different? In: Kukovics S, editor. Goat science. London: IntechOpen; 2018. p. 39-79.
Nadimi ES, Jorgensen RN, Blanes-Vidal V, Christensen S. Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks. Comput Electron Agric. 2012;82:44-54.
National Mastitis Council. Current concepts of bovine mastitis. 4th ed. Madison, WI, USA: National Mastitis Council, Inc.; 1998. 64 p.
Osowski S. Sieci neuronowe w ujeciu algorytmicznym [Neural networks in an algorithmic approach]. Warszawa: Wydawnictwa Naukowo-Techniczne; 1996. 349 p. Polish.
Ozesmi SL, Ozesmi U, Tan CO. Methodological issues in building, training, and testing artificial neural networks in ecological application. Ecol Modell. 2005;195(1):83-93.
Raja TV, Ruhil AP, Gandhi RS. Comparison of connectionist and multiple regression approaches for prediction of body weight of goats. Neural Comput Appl. 2012;21(1):119-24.
Rosenblatt F. The perceptron. A theory of statistical separability in cognitive system. Project Para Report No. VG-1196-G-1. Buffalo, N.Y.: Cornell Aeronautical Laboratory; 1958. 268 p.
Rutkowska D, Pilinski M, Rutkowski L. Sieci neuronowe, algorytmy genetyczne i systemy rozmyte [Neural networks, genetic algorithms and fuzzy systems]. Warszawa, Lodz: Wydaw. Naukowe PWN; 1997. 410 p. Polish.
Rutkowski L. Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans Neural Netw. 2004 Jul;15(4):811-27.
Salehi F, Lacroix R, Wade KM. Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks. Comput Electron Agric. 1998;20(3):199-213.
Schobesberger H, Peham C. Computerized detection of supporting forelimb lameness in the horse using an artificial neural network. Vet J. 2002 Jan;163(1):77-84.
Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 2015 Jan;61:85-117.
Sharma AK, Sharma RK, Kasana HS. Prediction of first lactation 305-day milk yield in Karan Fries dairy cattle using ANN modeling. Appl Soft Comput. 2007;7(3):1112-20.
Suchorski-Tremblay AM, Kok R, Thomason JJ. Modelling horse hoof cracking with artificial neural networks. Can Biosyst Eng. 2001;43(7):7.15-7.22.
Tadeusiewicz R. Sieci neuronowe [Neural networks]. Warszawa: Akademicka Oficyna Wydawnicza; 1993. 195 p. Polish.
Whitley D. Genetic algorithms and neural networks. Genetic Algor Eng Com Sci. 1995;16(8):13-52.
Yang XZ, Lacroix R, Wade KM. Investigation into the production and conformation traits associated with clinical mastitis using artificial neural networks. Can J Anim Sci. 2000;80(3):415-26.
Zborowski D, Grzesiak W. Detection of heifers with dystocia using artificial neural networks with regard to ERalpha-BGLI, ERalpha-SNABI and CYP19-PVUII genotypes. Acta Sci Pol Zootechnica. 2011;10(2):105-16.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti