Passive immunity in lambs: Colostral and serum γ-glutamyltransferase as a predictor of IgG concentration and related to the diseases from birth to 12 weeks of life

https://doi.org/10.17221/57/2020-VETMEDCitation:

Gokce E, Kirmizigul AH, Atakisi O, Kuru M, Erdogan HM (2021): Passive immunity in lambs: Colostral and serum γ-glutamyltransferase as a predictor of IgG concentration and related to the diseases from birth to 12 weeks of life. Vet Med-Czech 66, 45–57.

download PDF

The main goal of this study was to find a link between colostrum and the 1-day-old lamb serum γ-glutamyltransferase (GGT) activity and immunoglobulin G (IgG) concentration and their relation with neonatal diseases and beyond. Further, to set a linear relationship between the serum GGT activity (SGGTA) and the IgG concentration (SIgGC) in different days of the neonatal period, thereby determining the feasibility of the GGT activity in the prediction of the colostrum quality and passive immunity and to define a cut-off point for the SGGTA associated with an increased risk of illness or death in lambs. For this purpose, blood samples were obtained from the lambs before the colostrum intake (day 0) and on different days (1, 2, 4, 7, 14 and 28) in the neonatal period. The colostrum was collected from the respective ewes (n = 254) related to the lambs. The most accurate (R2 = 0.652) model for predicting the SIgGC or passive immune status was the multiple regression model developed to calculate ln[IgG] from ln[GGT] in healthy neonatal lambs using the serum GGT and IgG values of day 0, 1, 2, 4, 7, 14 and 28. The In[GGT] activity at 24 h after birth in lambs that died or became ill during the neonatal period accounted for approximately 77% and 88% of the variation in the ln[IgG] concentration at 24 h after birth, respectively. The study revealed that SGGTA-24 > 500 IU may be considered as a critical cut-off point for the adequate colostral passive transfer. This study also disclosed that the colostral GGT activity might be used as an indicator to determine the colostrum quality.

References:
Alves AC, Alves NG, Ascari IJ, Junqueira FB, Coutinho AS, Lima RR, Perez JR, De Paula SO, Furusho-Garcia IF, Abreu LR. Colostrum composition of Santa Inês sheep and passive transfer of immunity to lambs. J Dairy Sci. 2015 Jun;98(6):3706-16. https://doi.org/10.3168/jds.2014-7992
 
Aydogdu U, Guzelbektes H. Efect of colostrum composition on passive calf immunity in primiparous and multiparous dairy cows. Vet Med-Czech. 2018 Jan;63(1):1-11. https://doi.org/10.17221/40/2017-VETMED
 
Belkasmi F, Madani T, Mouffok C, Semara L. Enzymatic quality of colostrum in Ouled Djellal ewes, Algeria. Biol Rhythm Res. 2019 Jun:1-9. https://doi.org/10.1080/09291016.2019.1621061
 
Britti D, Massimini G, Peli A, Luciani A, Boari A. Evaluation of serum enzyme activities as predictors of passive transfer status in lambs. J Am Vet Med Assoc. 2005 Mar 15;226(6):951-5. https://doi.org/10.2460/javma.2005.226.951
 
Gokce E, Atakisi O, Kirmizigul AH, Unver A, Erdogan HM. Passive immunity in lambs: Serum lactoferrin concentrations as a predictor of IgG concentration and its relation to health status from birth to 12 weeks of life. Small Rumin Res. 2014;116(2-3):219-28. https://doi.org/10.1016/j.smallrumres.2013.11.006
 
Gokce E, Erdogan HM. An epidemiological study on neonatal lamb health. Kafkas Univ Vet Fak Derg. 2009;15(2):225-36.
 
Gokce E, Kirmizigul AH, Erdogan HM, Citil M. Risk factors associated with passive immunity, health, birth weight and growth performance in lambs: I. Effect of parity, dam’s health, birth weight, gender, type of birth and lambing season on morbidity and mortality. Kafkas Univ Vet Fak Derg. 2013;19(Suppl-A):A153-60. https://doi.org/10.9775/kvfd.2012.8440
 
Gokce E, Atakisi O, Kirmizigul AH, Erdogan HM. Interrelationships of serum and colostral IgG (passive immunity) with total protein concentrations and health status in lambs. Kafkas Univ Vet Fak Derg. 2019; 25(3):387-96.
 
Hine BC, Hunt PW, Colditz IG. Production and active transport of immunoglobulins within the ruminant mammary gland. Vet Immunol Immunopathol. 2019 May;211:75-84. https://doi.org/10.1016/j.vetimm.2019.04.006
 
Hogan I, Doherty M, Fagan J, Kennedy E, Conneely M, Brady P, Ryan C, Lorenz I. Comparison of rapid laboratory tests for failure of passive transfer in the bovine. Ir Vet J. 2015 Aug 25;68(1):18. https://doi.org/10.1186/s13620-015-0047-0
 
Lee SH, Jaekal J, Bae CS, Chung BH, Yun SC, Gwak MJ, Noh GJ, Lee DH. Enzyme-linked immunosorbent assay, single radial immunodiffusion, and indirect methods for the detection of failure of transfer of passive immunity in dairy calves. J Vet Intern Med. 2008 Jan-Feb;22(1):212-8. https://doi.org/10.1111/j.1939-1676.2007.0013.x
 
Lopreiato V, Ceniti C, Trimboli F, Fratto E, Marotta M, Britti D, Morittu VM. Evaluation of the capillary electrophoresis method for measurement of immunoglobulin concentration in ewe colostrum. J Dairy Sci. 2017 Aug;100(8):6465-9. https://doi.org/10.3168/jds.2016-12284
 
Loste A, Ramos J, Fernandez A, Ferrer L, Lacasta D, Verde M, Marca M, Ortin A. Effect of colostrum treated by heat on immunological parameters in newborn lambs. Livest Sci. 2008;117(2-3):176-83. https://doi.org/10.1016/j.livsci.2007.12.012
 
Maden M, Altunok V, Birdane FM, Aslan V, Nizamlioglu M. Blood and colostrum/milk serum gamma-glutamyltransferase activity as a predictor of passive transfer status in lambs. J Vet Med B Infect Dis Vet Public Health. 2003 Apr;50(3):128-31. https://doi.org/10.1046/j.1439-0450.2003.00629.x
 
Massimini G, Peli A, Boari A, Britti D. Evaluation of assay procedures for prediction of passive transfer status in lambs. Am J Vet Res. 2006 Apr;67(4):593-8. https://doi.org/10.2460/ajvr.67.4.593
 
McGrath BA, Fox PF, McSweeney PL, Kelly AL. Composition and properties of bovine colostrum: A review. Dairy Sci Technol. 2016;96(2):133-58. https://doi.org/10.1007/s13594-015-0258-x
 
Niine T, Peetsalu K, Tummeleht L, Kuks A, Orro T. Acute phase response in organic lambs associated with colostrum serum amyloid A, weight gain, and Cryptosporidium and Giardia infections. Res Vet Sci. 2018 Dec;121:117-23. https://doi.org/10.1016/j.rvsc.2018.10.013
 
Nowak R, Poindron P. From birth to colostrum: Early steps leading to lamb survival. Reprod Nutr Dev. 2006 Jul-Aug;46(4):431-46. https://doi.org/10.1051/rnd:2006023
 
Parish SM, Tyler JW, Besser TE, Gay CC, Krytenberg D. Prediction of serum IgG1 concentration in Holstein calves using serum gamma glutamyltransferase activity. J Vet Intern Med. 1997 Nov-Dec;11(6):344-7. https://doi.org/10.1111/j.1939-1676.1997.tb00478.x
 
Pauli JV. Colostral transfer of gamma glutamyl transferase in lambs. N Z Vet J. 1983 Sep;31(9):150-1.  https://doi.org/10.1080/00480169.1983.35004
 
Swarnkar C, Prince L, Sonawane G. Wind chill index and neonatal lamb mortality at an organized farm in semi-arid Rajasthan. Biol Rhythm Res. 2018;49(6):862-71. https://doi.org/10.1080/09291016.2018.1427599
 
Tessman RK, Tyler JW, Parish SM, Johnson DL, Gant RG, Grasseschi HA. Use of age and serum gamma-glutamyltransferase activity to assess passive transfer status in lambs. J Am Vet Med Assoc. 1997 Nov 1;211(9):1163-4.
 
Voigt K, Frohnmayer S, Strobel H, Sauter-Louis C, Zerbe H. Time pattern and causes of lamb mortality on commercial sheep farms in Southern Germany operating conservation grazing and non-seasonal production systems-a field study. Berl Munch Tierarztl Wochenschr. 2019;132(3-4):156-65.
 
Wilson LK, Tyler JW, Besser TE, Parish SM, Gant R. Prediction of serum IgG1 concentration in beef calves based on age and serum gamma-glutamyl-transferase activity. J Vet Intern Med. 1999 Mar-Apr;13(2):123-5. https://doi.org/10.1111/j.1939-1676.1999.tb01139.x
 
Zarrilli A, Micera E, Lacarpia N, Lombardi P, Pero M, Pelagalli A, D Angelo D, Mattia M, Avallone L. Evaluation of ewe colostrum quality by estimation of enzyme activity levels. Rev Med Vet. 2003;154(8/9):521-4.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti