Changes in the tissue concentrations of several neuropeptides in porcine intestines and intestine-innervating ganglia in the course of porcine proliferative enteropathy Z., Kaleczyc J., Zmudzki J., Sienkiewicz W., Zalecki M., Klimczuk M., Wasowicz K. (2018): Changes in the tissue concentrations of several neuropeptides in porcine intestines and intestine-innervating ganglia in the course of porcine proliferative enteropathy. Veterinarni Medicina, 63: 210-215.
download PDF

Inflammatory processes are associated with changes in the interplay of different pro- and anti-inflammatory factors, including neuropeptides, in tissue. This study was performed to investigate the influence of proliferative enteropathy on the concentration of several neuropeptides known to be involved in the regulation of the inflammatory process in porcine intestine and intestine-innervating ganglia. The concentration of galanin, vasoactive intestinal polypeptide, somatostatin, neuropeptide Y, substance P and calcitonin gene-related peptide were assayed with ELISA in the coeliac-superior mesenteric ganglion, inferior mesenteric ganglion, selected dorsal root ganglia, ileum and the descending colon in healthy and sick pigs. The concentrations of the studied neuropeptides were higher in sick animals. Statistically significant differences were found for coeliac-superior mesenteric ganglion (galanin, vasoactive intestinal polypeptide, somatostatin and neuropeptide Y), inferior mesenteric ganglion (galanin, somatostatin and neuropeptide Y), dorsal root ganglia (galanin, somatostatin, neuropeptide Y and calcitonin gene-related peptide), ileum (galanin and somatostatin) and the descending colon (galanin, somatostatin and neuropeptide Y). The data clearly show the influence of the inflammatory process on the concentration of some of the studied neuropeptides present in inflamed tissues and ganglia innervating the inflamed gut. These changes must be associated with the role the studied neuropeptides play in the inflammatory process.

BALEMBA O. B., GRONDAHL M. L., MBASSA G. K., SEMUGURUKA W. D., HAY-SMITH A., SKADHAUGE E., DANTZER V. (1998): The organisation of the enteric nervous system in the submucous and mucous layers of the small intestine of the pig studied by VIP and neurofilament protein immunohistochemistry. Journal of Anatomy, 192, 257-267
BENYA RICHARD V., MATKOWSKYJ KRISTINA A., DANILKOVICH ALEXEY, HECHT GAIL (1998): Galanin Causes Cl- Secretion in the Human Colon: Potential Significance of Inflammation-Associated NF-kappaB Activation on Galanin-1 Receptor Expression and Function. Annals of the New York Academy of Sciences, 863, 64-77
Bhatia Madhav (2010): Hydrogen Sulfide and Substance P in Inflammation. Antioxidants & Redox Signaling, 12, 1191-1202
Bossowska A, Adriaensen D, Gonkowski S, Wojtkiewicz J, Timmermans JP, Majewski M (2003): Distribution and neurochemical features of primary sensory neurons supplying the porcine colon descendens. Versammlung der Anatomischen Gesellschaft 98, 228.
Bossowska A, Jozefowicz S, Gonkowski S, Wojtkiewicz J, Kaleczyc J, Pidsudko Z, Majewski M (2004): Proliferative enteropathy (PE)-induced changes in the expression and co-incidence patterns of SP and/or CGRP in DRG neurons supplying the porcine descending colon. Polish Journal of Veterinary Sciences 7, 17–19.
Bulling Duncan G. S., Kelly David, Bond Susan, McQueen Daniel S., Seckl Jonathan R. (2001): Adjuvant-induced joint inflammation causes very rapid transcription of β-preprotachykinin and α-CGRP genes in innervating sensory ganglia. Journal of Neurochemistry, 77, 372-382
Chowers Y., Cahalon L., Lahav M., Schor H., Tal R., Bar-Meir S., Levite M. (2000): Somatostatin Through Its Specific Receptor Inhibits Spontaneous and TNF- - and Bacteria-Induced IL-8 and IL-1  Secretion from Intestinal Epithelial Cells. The Journal of Immunology, 165, 2955-2961
Di Sebastiano Pierluigi, Fink Thorsten, di Mola Fabio F, Weihe Eberhard, Innocenti Paolo, Friess Helmut, Büchler Markus W (1999): Neuroimmune appendicitis. The Lancet, 354, 461-466
EYSSELEIN VIKTOR E., REINSHAGEN MAX, PATEL AVENISH, DAVIS WILLIAM, NAST CYNTHIA, STERNINI CATIA (1992): Calcitonin Gene?Related Peptide in Inflammatory Bowel Disease and Experimentally Induced Colitis. Annals of the New York Academy of Sciences, 657, 319-327
FUJINO K, TAKAMI Y, GDELAFUENTE S, LUDWIG K, MANTYH C (2004): Inhibition of the vanilloid receptor subtype-1 attenuates TNBS-colitis. Journal of Gastrointestinal Surgery, 8, 842-848
Gonkowski S, Wojtkiewicz J, Bossowska A, Kaleczyc J, Sienkiewicz W, Majewski M (2004a): Co-incidence pattern of SP and CGRP in neural structures of the porcine descending colon affected by proliferative enteropathy. Polish Journal of Veterinary Sciences 7, 49–51.
Gonkowski S, Wojtkiewicz J, Bossowska A, Kaleczyc J, Calka J, Majewski M (2004b): Proliferative enteropathy-induced de novo synthesis of NPY in intramural ganglia neurons of the porcine descending colon. Polish Journal of Veterinary Sciences 7, 45–47.
Goursaud Stéphanie, Schäfer Sabrina, Dumont Amélie O., Vergouts Maxime, Gallo Alessandro, Desmet Nathalie, Deumens Ronald, Hermans Emmanuel (2015): The anti-inflammatory peptide stearyl-norleucine-VIP delays disease onset and extends survival in a rat model of inherited amyotrophic lateral sclerosis. Experimental Neurology, 263, 91-101
Khan Islam, Collins Stephen M (1994): Expression of cytokines in the longitudinal muscle myenteric plexus of the inflamed intestine of rat. Gastroenterology, 107, 691-700
Kiss M, Kemeny L, Gyulai R, Michel G, Husz S, Kovacs R, Dobozy A, Ruzicka T (1999): Effects of the neuropeptides substance P, calcitonin gene-related peptide and alpha-melanocyte-stimulating hormone on the IL-8/IL-8 receptor system in a cultured human keratinocyte cell line and dermal fibroblasts. Inflammation 23, 557–567.
Lin Q, Zou X, Ren Y, Wang J, Fang L, Willis W.D (2004): Involvement of peripheral neuropeptide y receptors in sympathetic modulation of acute cutaneous flare induced by intradermal capsaicin. Neuroscience, 123, 337-347
Lundeberg Thomas (2013): Acupuncture mechanisms in tissue healing: contribution of NO and CGRP. Acupuncture in Medicine, 31, 7-8
Page Nigel M. (2005): New challenges in the study of the mammalian tachykinins. Peptides, 26, 1356-1368
Pejsak Z, Zmudzki J, Stankevicius A (2001): Detection of Lawsonia intracellularis by one-tube nested PCR. Medycyna Weterynaryjna 57, 723–726.
Pidsudko Z, Wasowicz K, Sienkiewicz W, Kaleczyc J, Czaja K, Lakomy M (2003): The influence of inflammation on the expression of neuropeptides in the ileum-projecting primary sensory neurones in the pig. Folia Morphologica 62, 235–237.
Pidsudko Z., Kaleczyc J., Wąsowicz K., Sienkiewicz W., Majewski M., Zając W., Łakomy M. (2008): Distribution and Chemical Coding of Intramural Neurons in the Porcine Ileum During Proliferative Enteropathy. Journal of Comparative Pathology, 138, 23-31
Sharkey K (2002): Neuroimmune and epithelial interactions in intestinal inflammation. Current Opinion in Pharmacology, 2, 669-677
Steinhoff Martin S., von Mentzer Bengt, Geppetti Pierangelo, Pothoulakis Charalabos, Bunnett Nigel W. (2014): Tachykinins and Their Receptors: Contributions to Physiological Control and the Mechanisms of Disease. Physiological Reviews, 94, 265-301
Swindle M. M., Makin A., Herron A. J., Clubb F. J., Frazier K. S. (2011): Swine as Models in Biomedical Research and Toxicology Testing. Veterinary Pathology, 49, 344-356
Taylor B.K., Fu W., Kuphal K.E., Stiller C.-O., Winter M.K., Chen W., Corder G.F., Urban J.H., McCarson K.E., Marvizon J.C. (2014): Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons. Neuroscience, 256, 178-194
Yu Rongjie, Zhang HuaHua, Huang Lin, Liu Xiaofei, Chen Jiansu (2011): Anti-hyperglycemic, antioxidant and anti-inflammatory effects of VIP and a VPAC1 agonist on streptozotocin-induced diabetic mice. Peptides, 32, 216-222
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti