Identification and antibiotic resistance profiling of bacterial isolates from septicaemic soft-shelled turtles (Pelodiscus sinensis)

https://doi.org/10.17221/65/2016-VETMEDCitation:Chung T.H., Yi S.W., Kim B.S., Kim W.I., Shin G.W. (2017): Identification and antibiotic resistance profiling of bacterial isolates from septicaemic soft-shelled turtles (Pelodiscus sinensis). Veterinarni Medicina, 62: 169-177.
download PDF

The present study sought to identify pathogens associated with septicaemia in the Chinese soft-shelled turtle (Pelodiscus sinensis) and to characterise antibiotic resistance in these pathogens. Twenty-three isolates recovered from the livers of diseased soft-shelled turtles were genetically identified as Aeromonas hydrophila (n = 8), A. veronii (n = 3), Citrobacter freundii (n = 4), Morganella morganii (n = 3), Edwardsiella tarda (n = 2), Wohlfahrtiimonas chitiniclastica (n = 1), Chryseobacterium sp. (n = 1), and Comamonas sp. (n = 1). Most isolates (n = 21) were resistant to ampicillin whereas a low percentage of isolates was susceptible to aminoglycosides (amikacin, gentamicin, and tobramycin). PCR assays and sequence analysis revealed the presence of the qnrS2 and blaTEM antibiotic resistance genes in all isolates. The blaDHA-1, blaCTX-M-14 and blaCMY-2 genes were harboured by 17.4% (n = 4), 13.5% (n = 3) and 8.7% (n = 2) of the strains, respectively. One or more tetracycline resistance genes were detected in 60.9% (n = 14) of the isolates. Four isolates (17.4%) harboured single or multiple class 1 integron cassettes. Collectively, a variety of bacterial pathogens were involved in the occurrence of septicaemia in Chinese soft-shelled turtles and most of the isolates had multi-antibiotic resistant phenotypes. To our knowledge, the present report is the first to identify W. chitiniclastica and Comamonas sp. as causes of septicaemia in soft-shelled turtles and the first to identify Aeromonas spp. with blaCTX-M-14 and blaDHA-1 resistance genes.

References:
Akinbowale O.L., Peng H., Barton M.D. (2007): Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. Journal of Applied Microbiology, 103, 2016-2025  https://doi.org/10.1111/j.1365-2672.2007.03445.x
 
Al-Bahry Saif, Mahmoud Ibrahim, Elshafie Abdulkader, Al-Harthy Asila, Al-Ghafri Sabha, Al-Amri Issa, Alkindi Abdulaziz (2009): Bacterial flora and antibiotic resistance from eggs of green turtles Chelonia mydas: An indication of polluted effluents. Marine Pollution Bulletin, 58, 720-725  https://doi.org/10.1016/j.marpolbul.2008.12.018
 
Al-Bahry Saif N., Mahmoud Ibrahim Y., Al-Zadjali Maheera, Elshafie Abdulkader, Al-Harthy Asila, Al-Alawi Wafaa (2011): Antibiotic resistant bacteria as bio-indicator of polluted effluent in the green turtles, Chelonia mydas in Oman. Marine Environmental Research, 71, 139-144  https://doi.org/10.1016/j.marenvres.2010.12.005
 
Al-Bahry S.N., Al-Zadjali M.A., Mahmoud I.Y., Elshafie A.E. (2012): Biomonitoring marine habitats in reference to antibiotic resistant bacteria and ampicillin resistance determinants from oviductal fluid of the nesting green sea turtle, Chelonia mydas. Chemosphere, 87, 1308-1315  https://doi.org/10.1016/j.chemosphere.2012.01.051
 
Almuzara M. N., Palombarani S., Tuduri A., Figueroa S., Gianecini A., Sabater L., Ramirez M. S., Vay C. A. (): First Case of Fulminant Sepsis Due to Wohlfahrtiimonas chitiniclastica. Journal of Clinical Microbiology, 49, 2333-2335  https://doi.org/10.1128/JCM.00001-11
 
Aravena-Roman M., Inglis T. J. J., Henderson B., Riley T. V., Chang B. J. (): Antimicrobial Susceptibilities of Aeromonas Strains Isolated from Clinical and Environmental Sources to 26 Antimicrobial Agents. Antimicrobial Agents and Chemotherapy, 56, 1110-1112  https://doi.org/10.1128/AAC.05387-11
 
Barnaud G, Arlet G, Verdet C, Gaillot O, Lagrange PH, Philippon A (1998): Salmonella enteritidis: AmpC plasmid-mediated inducible beta-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrobial Agents Chemotherapy 42, 2352–2358.
 
Cattoir V., Poirel L., Rotimi V., Soussy C.-J., Nordmann P. (2007): Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. Journal of Antimicrobial Chemotherapy, 60, 394-397  https://doi.org/10.1093/jac/dkm204
 
Chen C.-Y., Chen W.-C., Chin S.-C., Lai Y.-H., Tung K.-C., Chiou C.-S., Hsu Y.-M., Chang C.-C. (2010): Prevalence and Antimicrobial Susceptibility of Salmonellae Isolates from Reptiles in Taiwan. Journal of Veterinary Diagnostic Investigation, 22, 44-50  https://doi.org/10.1177/104063871002200107
 
Chen JS, Ding XY, Zhu NY, Kong L, He ZY (2013a): Prevalence and antimicrobial susceptibility of Aeromonas species from diseased Chinese soft-shelled turtles (Trionyx sinens). Aquaculture Research 46, 1527–1536.
 
Chen JS, Zhu NY, Kong L, Bei YJ, Zheng TL, Ding XY, He ZY (2013b): First case of soft shell disease in Chinese soft-shelled turtle (Trionyx sinens) associated with Aeromonas sobria–A. veronii complex. Aquaculture 406, 62–67.
 
Dallenne C., Da Costa A., Decre D., Favier C., Arlet G. (): Development of a set of multiplex PCR assays for the detection of genes encoding important  -lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 65, 490-495  https://doi.org/10.1093/jac/dkp498
 
Davies J., Davies D. (): Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews, 74, 417-433  https://doi.org/10.1128/MMBR.00016-10
 
Diaz M. A., Cooper R. K., Cloeckaert A., Siebeling R. J. (): Plasmid-Mediated High-Level Gentamicin Resistance among Enteric Bacteria Isolated from Pet Turtles in Louisiana. Applied and Environmental Microbiology, 72, 306-312  https://doi.org/10.1128/AEM.72.1.306-312.2006
 
Farshad S, Norouzi F, Aminshahidi M, Heidari B, Alborzi A (2012): Two cases of bacteremia due to an unusual pathogen, Comamonas testosteroni in Iran and a review literature. Journal of Infection in Developing Countries 6, 521–525.
 
FENG Hong, YAMAZAKI Masatoshi, MATSUKI Norio, SAITO Hiroshi (1996): Anti-tumor Effects of Orally Administered Soft-Shelled Turtle Powder in Mice.. Biological & Pharmaceutical Bulletin, 19, 367-368  https://doi.org/10.1248/bpb.19.367
 
Foti M., Giacopello C., Bottari Teresa, Fisichella V., Rinaldo D., Mammina C. (2009): Antibiotic Resistance of Gram Negatives isolates from loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea. Marine Pollution Bulletin, 58, 1363-1366  https://doi.org/10.1016/j.marpolbul.2009.04.020
 
Guerra B., Helmuth R., Thomas K., Beutlich J., Jahn S., Schroeter A. (): Plasmid-mediated quinolone resistance determinants in Salmonella spp. isolates from reptiles in Germany. Journal of Antimicrobial Chemotherapy, 65, 2043-2045  https://doi.org/10.1093/jac/dkq242
 
Hernandez-Divers Stephen J., Hensel Patrick, Gladden Juliet, Hernandez-Divers Sonia M., Buhlmann Kurt A., Hagen Chris, Sanchez Susan, Latimer Kenneth S., Ard Mary, Camus Alvin C. (2009): INVESTIGATION OF SHELL DISEASE IN MAP TURTLES (GRAPTEMYS SPP.). Journal of Wildlife Diseases, 45, 637-652  https://doi.org/10.7589/0090-3558-45.3.637
 
Hu G, Li D, Li T, Su X (2010): Isolation and identification of bacteria from soft-shelled turtle (Trionyx sinensis) associated with fulminant septicaemia. Journal of Fishery Sciences of China 17, 859–868.
 
Jacoby G. A. (): AmpC  -Lactamases. Clinical Microbiology Reviews, 22, 161-182  https://doi.org/10.1128/CMR.00036-08
 
Jang Jeonghwan, Suh Yae-Seul, Di Doris Y. W., Unno Tatsuya, Sadowsky Michael J., Hur Hor-Gil (2013): Pathogenic Escherichia coli Strains Producing Extended-Spectrum β-Lactamases in the Yeongsan River Basin of South Korea. Environmental Science & Technology, 47, 1128-1136  https://doi.org/10.1021/es303577u
 
Kim J., Lim Y.-M., Jeong Y.-S., Seol S.-Y. (): Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 Extended-Spectrum  -Lactamases in Enterobacteriaceae Clinical Isolates in Korea. Antimicrobial Agents and Chemotherapy, 49, 1572-1575  https://doi.org/10.1128/AAC.49.4.1572-1575.2005
 
Kohler G (ed.) (2006): Diseases of Amphibians and Reptiles. Krieger Publishing Co., Malabar. 184 pp.
 
Lázár Viktória, Nagy István, Spohn Réka, Csörgő Bálint, Györkei Ádám, Nyerges Ákos, Horváth Balázs, Vörös Andrea, Busa-Fekete Róbert, Hrtyan Mónika, Bogos Balázs, Méhi Orsolya, Fekete Gergely, Szappanos Balázs, Kégl Balázs, Papp Balázs, Pál Csaba (): Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nature Communications, 5, -  https://doi.org/10.1038/ncomms5352
 
Lee MF, Peng CF, Lin YH, Lin SR, Chen YH (2008): Molecular diversity of class 1 integrons in human isolates of Aeromonas spp. from southern Taiwan. Japanese Journal of Infectious Diseases 61, 343–349.
 
Livermore DM (1995): β-Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 8, 557–584.
 
Marti Elisabet, Variatza Eleni, Balcazar Jose Luis (2014): The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22, 36-41  https://doi.org/10.1016/j.tim.2013.11.001
 
Martinez-Murcia Antonio J., Monera Arturo, Saavedra M. Jose, Oncina Remedios, Lopez-Alvarez Monserrate, Lara Erica, Figueras M. Jose (2011): Multilocus phylogenetic analysis of the genus Aeromonas. Systematic and Applied Microbiology, 34, 189-199  https://doi.org/10.1016/j.syapm.2010.11.014
 
NSEIR William, KHATEEB Julnar, AWAWDEH Mohammad, GHALI Murad (2011): Catheter-related bacteremia caused by Comamonas testosteroni in a hemodialysis patient. Hemodialysis International, 15, 293-296  https://doi.org/10.1111/j.1542-4758.2010.00524.x
 
Orós J, Torrent A, Calabuig P, Déniz S (2005): Diseases and causes of mortality among sea turtles stranded in the Canary Islands, Spain (1998-2001). Diseases of Aquatic Organisms, 63, 13-24  https://doi.org/10.3354/dao063013
 
Rebaudet Stanislas, Genot Séverine, Renvoise Aurélie, Fournier Pierre-Edouard, Stein Andreas (2009): Wohlfahrtiimonas chitiniclastica Bacteremia in Homeless Woman. Emerging Infectious Diseases, 15, 985-987  https://doi.org/10.3201/eid1506.080232
 
Seepersadsingh N., Adesiyun A. A. (2003): Prevalence and Antimicrobial Resistance of Salmonella spp. in Pet Mammals, Reptiles, Fish Aquarium Water, and Birds in Trinidad. Journal of Veterinary Medicine Series B, 50, 488-493  https://doi.org/10.1046/j.0931-1793.2003.00710.x
 
Wellington Elizabeth MH, Boxall Alistair BA, Cross Paul, Feil Edward J, Gaze William H, Hawkey Peter M, Johnson-Rollings Ashley S, Jones Davey L, Lee Nicholas M, Otten Wilfred, Thomas Christopher M, Williams A Prysor (2013): The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases, 13, 155-165  https://doi.org/10.1016/S1473-3099(12)70317-1
 
Wheeler Emily, Hong Pei-Ying, Bedon Lenin Cruz, Mackie Roderick I. (2012): CARRIAGE OF ANTIBIOTIC-RESISTANT ENTERIC BACTERIA VARIES AMONG SITES IN GALÁPAGOS REPTILES. Journal of Wildlife Diseases, 48, 56-67  https://doi.org/10.7589/0090-3558-48.1.56
 
Wu P J, Shannon K, Phillips I (1994): Effect of hyperproduction of TEM-1 beta-lactamase on in vitro susceptibility of Escherichia coli to beta-lactam antibiotics.. Antimicrobial Agents and Chemotherapy, 38, 494-498  https://doi.org/10.1128/AAC.38.3.494
 
Yáñez M. A., Martínez-Murcia A. J., Figueras M. J., Catalán V., Apráiz D. (2003): Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. International Journal of Systematic and Evolutionary Microbiology, 53, 875-883  https://doi.org/10.1099/ijs.0.02443-0
 
Yi Seung-Won, You Myung-Jo, Cho Ho-Seong, Lee Chang-Seop, Kwon Joong-Ki, Shin Gee-Wook (2013): Molecular characterization of Aeromonas species isolated from farmed eels (Anguilla japonica). Veterinary Microbiology, 164, 195-200  https://doi.org/10.1016/j.vetmic.2013.02.006
 
Yin Jun, Tezuka Yasuhiro, Subehan , Shi Liying, Ueda Jun-ya, Matsushige Katsumichi, Kadota Shigetoshi (2005): A Combination of Soft-Shell Turtle Powder and Essential Oil of a Unicellular Chorophyte Prevents Bone Loss and Decreased Bone Strength in Ovariectomized Rats. Biological & Pharmaceutical Bulletin, 28, 275-279  https://doi.org/10.1248/bpb.28.275
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti