Tolerance of Biopronil Spot on® after repeated single- or multiple-dose topical treatments in dogs

https://doi.org/10.17221/6/2021-VETMEDCitation:

Turlewicz-Podbielska H, Kowalski CJ, Burmanczuk A, Vynjarska A, Wojciechowski J, Pomorska-Mol M, Rybska M (2022): Tolerance of Biopronil Spot on® after repeated single- or multiple-dose topical treatments in dogs. Vet Med-Czech 67, 418–429.

download PDF

A variety of toxic effects of fipronil (FIP), the active substance of Biopronil Spot on®, on animals and humans has been reported and raises the need to investigate the FIP toxic effects. The objectives of the study were the evaluation of the local and systemic tolerance of Biopronil Spot on® and the assessment of its influence on haematological and biochemical blood parameters after single and multiple topical treatment in dogs. Thirty-two mixed breed dogs were included in the study assessing the local and general tolerance of Biopronil Spot on® following single, triple and fivefold dose after spot-on multiple applications in dogs (on days 0, +28 and +56) at a dosage 134 mg for a dog weighing 10–20 kg and 268 mg for a dog weighing 21–40 kg. A physical examination and biochemical and haematological analyses were performed on the days of the study as follows: –14, –5, +3, +31, +59, +70. No visible pathological changes on the skin were observed. The biochemical and haematological indicators rarely exceeded the reference values. No influence of Biopronil Spot on® administered in single, triple and fivefold repeated doses on the assessed clinical, haematological and biochemical parameters in dogs was found under the conditions described in the study.

References:
Abouelghar GE, El-Bermawy ZA, Salman HMS. Oxidative stress, hematological and biochemical alterations induced by sub-acute exposure to fipronil (COACH®) in albino mice and ameliorative effect of selenium plus vitamin E. Environ Sci Pollut Res Int. 2020 Mar;27(8):7886-900. https://doi.org/10.1007/s11356-019-06579-9
 
Arif SH, Yadav N, Rehman S, Mehdi G. Study of hemolysis during storage of blood in the blood bank of a tertiary health care centre. Indian J Hematol Blood Transfus. 2017 Dec;33(4):598-602. https://doi.org/10.1007/s12288-016-0769-5
 
Badgujar PC, Pawar NN, Chandratre GA, Telang AG, Sharma AK. Fipronil induced oxidative stress in kidney and brain of mice: Protective effect of vitamin E and vitamin C. Pestic Biochem Physiol. 2015 Feb;118:10-8. https://doi.org/10.1016/j.pestbp.2014.10.013
 
Badgujar PC, Chandratre GA, Pawar NN, Telang AG, Kurade NP. Fipronil induced oxidative stress involves alterations in SOD1 and catalase gene expression in male mice liver: Protection by vitamins E and C. Environ Toxicol. 2016 Sep;31(9):1147-58. https://doi.org/10.1002/tox.22125
 
Cravedi JP, Delous G, Zalko D, Viguie C, Debrauwer L. Disposition of fipronil in rats. Chemosphere. 2013 Nov;93(10):2276-83. https://doi.org/10.1016/j.chemosphere.2013.07.083
 
De Oliveira PR, Bechara GH, Denardi SE, Oliveira RJ, Mathias MI. Cytotoxicity of fipronil on mice liver cells. Microsc Res Tech. 2012 Jan;75(1):28-35. https://doi.org/10.1002/jemt.21018
 
Gupta R. Fipronil. In: Gupta R, editor. Veterinary toxicology: Basic and clinical principles. San Diego, USA: Academic Press; 2007. p. 502-4.
 
Hainzl D, Cole LM, Casida JE. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem Res Toxicol. 1998 Dec;11(12):1529-35. https://doi.org/10.1021/tx980157t
 
Khan S, Jan MH, Kumar D, Telang AG. Firpronil induced spermotoxicity is associated with oxidative stress, DNA damage and apoptosis in male rats. Pestic Biochem Physiol. 2015 Oct;124:8-14. https://doi.org/10.1016/j.pestbp.2015.03.010
 
Koslowski S, Latapy C, Auvray P, Blondel M, Meijer L. Long-term fipronil treatment induces hyperactivity in female mice. Int J Environ Res Public Health. 2020 Feb 29;17(5):1579. https://doi.org/10.3390/ijerph17051579
 
Mansour SA, Mossa AH. Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pest Biochem Physiol. 2009 Jan;93(1):34-9. https://doi.org/10.1016/j.pestbp.2008.09.004
 
Mansour SA, Mossa AH. Oxidative damage, biochemical and histopathological alteration in rat exposed to chlorpyrifos and the role of zinc as antioxidant. Pest Biochem Physiol. 2010 Jan;96(1):14-23. https://doi.org/10.1016/j.pestbp.2009.08.008
 
Meadows C, Guerino F, Sun F. A randomized, blinded, controlled USA field study to assess the use of fluralaner topical solution in controlling canine flea infestations. Parasite Vector. 2017 Jan 19;10(1):36. https://doi.org/10.1186/s13071-017-1971-5
 
Mohamed F, Senarathna L, Percy A, Abeyewardene M, Eaglesham G, Cheng R, Azher S, Hittarage A, Dissanayake W, Sheriff MH, Davies W, Buckley NA, Eddleston M. Acute human self-poisoning with the N-phenylpyrazole insecticide fipronil – A GABAA-gated chloride channel blocker. J Toxicol Clin Toxicol. 2004 Sep;42(7):955-63. https://doi.org/10.1081/CLT-200041784
 
Mossa ATH, Swelam ES, Mohafrash SMM. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats. Toxicol Rep. 2015 Feb 19;2:775-8. https://doi.org/10.1016/j.toxrep.2015.02.009
 
Prashanth MS, David M. Changes in nitrogen metabolism of the freshwater fish Cirrhinus mrigala following exposure to cypermethrin. J Basic Clin Physiol Pharmacol. 2006;17(1):63-70.
 
Rohdich N, Roepke RK, Zschiesche E. A randomized, blinded, controlled and multi-centered field study comparing the efficacy and safety of BravectoTM (fluralaner) against FrontlineTM (fipronil) in flea- and tick-infested dogs. Parasite Vector. 2014 Mar 4;7(1):1-5. https://doi.org/10.1186/1756-3305-7-83
 
Schomaker S, Warner R, Bock J, Johnson K, Potter D, Van Winkle J, Aubrecht J. Assessment of emerging biomarkers of liver injury in human subjects. Toxicol Sci. 2013 Apr;132(2):276-83. https://doi.org/10.1093/toxsci/kft009
 
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EA, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int. 2015 Jan;22(1):5-34. https://doi.org/10.1007/s11356-014-3470-y
 
Tingle CC, Rother JA, Dewhurst CF, Lauer S, King WJ. Fipronil: Environmental fate, ecotoxicology, and human health concerns. Rev Environ Contam Toxicol. 2003;176:1-66.
 
Wang X, Martinez MA, Wu Q, Ares I, Martinez-Larranaga MR, Anadon A, Yuan Z. Fipronil insecticide toxicology: Oxidative stress and metabolism. Crit Rev Toxicol. 2016 Nov;46(10):876-99. https://doi.org/10.1080/10408444.2016.1223014
 
Winnicka A. Wartosci referencyjne podstawowych badan laboratoryjnych w weterynarii [Reference values for basic laboratory tests in veterinary medicine]. Warsaw, Poland: SGGW Warszawa; 2004. p. 26, 103, 114. Polish.
 
Zhao X, Salgado VL, Yeh JZ, Narahashi T. Differential actions of fipronil and dieldrin insecticides on GABA-gated chloride channels in cockroach neurons. J Pharmacol Exp Ther. 2003 Sep;306(3):914-24. https://doi.org/10.1124/jpet.103.051839
 
Zhao X, Yeh JZ, Salgado VL, Narahashi T. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. J Pharmacol Exp Ther. 2004 Jul;310(1):192-201. https://doi.org/10.1124/jpet.104.065516
 
Ziliotto L, Luna SPL, Filho DAA, Resende LO, Aun AG, Braz MG. Genotoxicity assessment of fipronil (Frontline plus®) in Canis familiaris. Pesqui Vet Brasil. 2017 Mar;37(3):257-60. https://doi.org/10.1590/s0100-736x2017000300009
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti