A crude capsular polysaccharide extract as a potential novel subunit vaccine with cross-protection against the most prevalent serovars of Glaesserella (Haemophilus) parasuis in the Czech Republic

https://doi.org/10.17221/71/2019-VETMEDCitation:Matiaskova K., Nedbalcova K., Tesarik R., Kudlackova H., Gebauer J., Toman M., Faldyna M. (2019): A crude capsular polysaccharide extract as a potential novel subunit vaccine with cross-protection against the most prevalent serovars of Glaesserella (Haemophilus) parasuis in the Czech Republic. Veterinarni Medicina, 64: 392-399.
download PDF

Glaesserella (Haemophilus) parasuis is a part of the normal flora of the respiratory tract of pigs. However, under certain conditions it can also induce severe systemic disease with high morbidity and mortality leading to gross economic losses in the pig industry. The most prevalent serovars in pig herds in the Czech Republic are the virulent serovars 1, 4, 5 and 13. The currently available commercial vaccines are inactivated vaccines with certain limitations, such as no or poor cross-serovar protection. Therefore, the aim of the present study was to construct a subunit vaccine with a crude capsular polysaccharide extract (cCPS) isolated from G. parasuis CAPM 6475 (serovar 5) and evaluate its immunogenicity in a mouse model. Mice were immunised subcutaneously with two doses of the constructed vaccine in a 14-day interval and challenged intraperitoneally with various G. parasuis strains (serovars 1, 4, 5, 13) at 21 days after the second immunisation. The results of the ELISA test showed that the boost dose of the vaccine induced the production of IgG antibodies in high levels. On the basis of the death cases, the pathological findings and the bacterial isolation, the mice immunised with the cCPS were partially protected against the challenge with the homologous serovar 5 as well as with heterologous serovars 1, 4 and 13 of G. parasuis. The cross-reaction of the mixed serum from the immunised mice with the tested serovars was seen in the western-blotting also. Moreover, the most abundant protein found in the cCPS by mass spectrometry was catalase, a protein of molecular weight 55 kDa that may correspond to the strongest reaction seen in the western-blotting. Our findings indicated that the crude capsular polysaccharide extract may provide an effective immunogenicity in preventing a G. parasuis infection caused by the most prevalent serovars in the Czech Republic. However, the evaluation of the efficacy needs to be performed in pigs before any conclusions can be drawn.

References:
Adlam C, Knights JM, Mugridge A, Lidnon JC, Baker PRW, Beesley JE, Spacey B, Craig GR, Nagy LK (1984): Purification, characterization and immunological properties of the serotype-specific capsular polysaccharide of Pasteurella haemolytica (serotype A1) organisms. Journal of General Microbiology 130, 2415–2426.  https://doi.org/10.1099/00221287-130-9-2415
 
Amano H, Shibata M, Kajio N, Morozumi T (1994): Pathologic observations of pigs intranasally inoculated with serovar 1, 4 and 5 of Haemophilus parasuis using immunoperoxidase method. Journal of Veterinary Medical Science 56, 639–644. https://doi.org/10.1292/jvms.56.639
 
Biberstein EL, White DC (1969): A proposal for the establishment of two new Haemophilus species. Journal of Medical Microbiology 2, 75–77. https://doi.org/10.1099/00222615-2-1-75
 
Costa-Hurtado M, Aragon V (2013): Advances in the quest for virulence factors of Haemophilus parasuis. The Veterinary Journal 198, 571–576. https://doi.org/10.1016/j.tvjl.2013.08.027
 
Guo L, Xu L, Wu T, Fu S, Qiu Y, Hu ChA, Ren X, Liu R, Ye M (2016): Evaluation of recombinant protein superoxide dismutase of Haemophilus parasuis strain SH0165 as vaccine candidate in a mouse model. Canadian Journal of Microbiology 63, 312–320.  https://doi.org/10.1139/cjm-2016-0671
 
Howell KJ, Weinert LA, Luan SL, Peters SE, Chaudhuri RR, Harris D, Angen O, Aragon V, Parkhill J, Langford PR, Rycroft AN, Wren BW, Tucker AW, Maskell DJ (2013): Gene content and diversity of the loci encoding biosynthesis of capsular polysaccharides of the fifteen serovar reference strains of Haemophilus parasuis. Journal of Bacteriology 195, 4264–4273.
 
Howell KJ, Weinert LA, Chaudhuri RR, Luan SL, Peters SE, Corander J, Harris D, Angen O, Aragon V, Bensaid A, Williamson SM, Parkhill J, Langford PR, Rycroft AN, Wren BW, Holden MTG, Tucker AW, Maskell DJ (2014): The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis. BMC Genomics 15. doi: 10.1186/1471-2164-15-1179. https://doi.org/10.1186/1471-2164-15-1179
 
Inzana TJ, Dickerman AW, Bandara AB (2016): Taxonomic reclassification of “Haemophilus parasuis” to Glaesserella parasuis gen. nov., comb. nov. In: The Prato Conference on the Pathogenesis of Bacterial Infections of Animals; October 11–14, 2016, Prato, Italy. Book of Abstracts. 3 p.
 
Kielstein P, Rapp-Gabrielson VJ (1992): Designation of 15 serovars of Haemophilus parasuis based immunodiffusion using heat-stable antigen extracts. Journal of Clinical Microbiology 30, 862–865.
 
Laemmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0
 
Li XH, Zhao GZ, Qiu LX, Dai AL, Wu WW, Yang XY (2015): Protective efficacy of an inactive vaccine based on the LY02 isolat eagainst acute Haemophilus parasuis infection in piglets. BioMed Research International 5, 1–8.
 
Li M, Li C, Song S, Kang H, Yang D, Li G (2016): Development and antigenic characterization of three recombinant proteins with potential for Glässer’s disease prevention. Vaccine 34, 2251–2258. https://doi.org/10.1016/j.vaccine.2016.03.014
 
Li G, Xie F, Li J, Liu J, Li D, Zhang Y, Langford PR, Li Y, Liu S, Wang C (2017): Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach. Journal of Proteomics 136, 111–117. https://doi.org/10.1016/j.jprot.2017.05.014
 
Little TWA (1970): Haemophilus parasuis infection in pigs. Veterinary Record 87, 399–402. https://doi.org/10.1136/vr.87.14.399
 
Liu L, Cheng G, Wang C, Pan X, Cong Y, Pan Q, Wang J, Zheng F, Hu F, Tang J (2009): Identification and experimental verification of protective antigens against Streptococcus suis serotype 2 based on genome sequence analysis. Current Microbiology 58, 11–7. https://doi.org/10.1007/s00284-008-9258-x
 
Liu H, Xue Q, Zeng Q, Zhao Z (2016): Haemophilus parasuis vaccines. Veterinary Immunology and Immunopathology 180, 53–58. https://doi.org/10.1016/j.vetimm.2016.09.002
 
Moller K, Kilian M (1990): V-factor-dependent members of the family Pasteurellaceae inthe porcine upper respiratory tract. Journal of Clinical Microbiology 28, 2711–2716.
 
Nedbalcova K, Jaglic Z, Ondriasova R, Kucerova Z (2005): Prevalence of serotypes and antibiotic resistance in Haemophilus parasuis isolates in the Czech Republic (in Czech). Veterinarstvi 55, 763–768.
 
Nedbalcova K, Kucerova Z, Krejci J, Tesarik R, Gopfert E, Kummer V, Leva L, Kudlackova H, Ondriasova R, Faldyna M (2011): Passive immunization of post-weaned piglets using hyperimmune serum against experimental Haemophilus parasuis infection. Research in Veterinary Science 91, 225–229. https://doi.org/10.1016/j.rvsc.2010.12.008
 
Olvera A, Pina S, Perez-Simob M, Aragon V, Segales J, Bensaid A (2011): Immunogenicity and protection against Haemophilus parasuis infection after vaccination with recombinant virulence associated trimeric autotransporters (VtaA). Vaccine 29, 2797–2802. https://doi.org/10.1016/j.vaccine.2011.01.105
 
Peet RL, Fry J, Lloyd J, Henderson J, Curran J, Moir D (1983): Haemophilus parasuis septicaemia in pigs. Australian Veterinary Journal 60. doi: 10.1111/j.1751-0813.1983.tb05960.x. https://doi.org/10.1111/j.1751-0813.1983.tb05960.x
 
Perry MB, MacLean LL, Gottschalk M, Aragon V, Vinogradov E (2013): Structure of the capsular polysaccharides and lipopolysaccharides from Haemophilus parasuis strains ER-6P (serovar 15) and Nagasaki (serovar 5). Carbohydrate Research 378, 91–97.  https://doi.org/10.1016/j.carres.2013.04.023
 
Turni C, Singh R, Blackall PJ (2018): Virulence-associated gene profiling, DNA fingerprinting and multilocus sequence typing of Haemophilus parasuis isolates in Australia. Australian Veterinary Journal 96, 196–202. https://doi.org/10.1111/avj.12705
 
van den Bosch H, Frey J (2003): Interference of outer membrane protein PalA with protective immunity against Actinobacillus pleuropneumoniae infections in vaccinated pigs. Vaccine 21, 3601–3607. https://doi.org/10.1016/S0264-410X(03)00410-9
 
Wen Y, Wen Y, Wen X, Cao S, Huang X, Wu R, Zhao Q, Liu M, Huang Y, Yan Q, Han X, Ma X, Dai K, Ding L, Liu S, Yang J (2018): OxyR of Haemophilus parasuis is a global transcriptional regulator important in oxidative stress resistance and growth. Gene 643, 107–116. https://doi.org/10.1016/j.gene.2017.12.010
 
Weintraub A (2003): Immunology of bacterial polysaccharide antigens. Carbohydrate Research 338, 2539–2547. https://doi.org/10.1016/j.carres.2003.07.008
 
Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009): Universal sample preparation method for proteome analysis. Nature Methods 6, 359–362. https://doi.org/10.1038/nmeth.1322
 
Zhang B, Tang C, Liao M, Yue H (2014): Update on the pathogenesis of Haemophilus parasuis infection and virulence factors. Veterinary Microbiology 168, 1–7. https://doi.org/10.1016/j.vetmic.2013.07.027
 
Zheng X, Yang X, Li X, Qiu G, Dai A, Hung Q, Huang C, Guo X (2017): Omp16-based vaccine encapsulated by alginate-chitosan microspheres provides significant protection against Haemophilus parasuis in mice. Vaccine 35, 1417–1423. https://doi.org/10.1016/j.vaccine.2017.01.067
 
Zhou M, Guo Y, Zhao J, Hu Q, Hu Y, Zhang A, Chen H, Jin M (2009): Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine 27, 5271–5277. https://doi.org/10.1016/j.vaccine.2009.06.051
 
download PDF

© 2019 Czech Academy of Agricultural Sciences