Evaluation of a poly(lactic-acid) scaffold filled with poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of a segmental bone defect in a canine model

https://doi.org/10.17221/80/2019-VETMEDCitation:Yun J., Heo S., Lee M., Lee H. (2019): Evaluation of a poly(lactic-acid) scaffold filled with poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of a segmental bone defect in a canine model. Veterinarni Medicina, 64: 531-538.
download PDF

Critical-sized bone defects are a difficult problem in both human and veterinary medicine. To address this issue, synthetic graft materials have been garnering attention. Abundant in vitro studies have proven the possibilities of poly(lactic-acid) (PLA) scaffolds and poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) nanofibres for treating bone defects. The present study aimed at conducting an in vivo assessment of the biological performance of a three dimensional (3D)-printed PLA scaffold filled with a PLGA/HAp nanofibrous scaffold to estimate its potential applications in bone defect reconstruction surgery. Defects were created in a 20 mm-long region of the radius bone. The defects created on the right side in six Beagle dogs (n = 6) were left untreated (Group 1). The defects on the left side (n = 6) were filled with 3D-printed PLA scaffolds incorporated with PLGA/Hap nanofibres with gelatine (Group 2). The other six Beagle dog defects were made bilaterally (n = 12) and filled with the same material as that used in Group 2 along with recombinant bone morphogenetic protein 2 (rhBMP-2) (Group 3). Both the radiological and histological examinations were performed for observing the reaction of the scaffold and the bone. Micro-computed tomography (CT) was utilised for the evaluation of the bone parameters 20 weeks after the experiment. The radiological and histological results revealed that the scaffold was biodegradable and was replaced by new bone tissue. The micro-CT revealed that the bone parameters were significantly (P < 0.05) increased in Group 3. Based on these results, our study serves as a foundation for future studies on bone defect treatment using synthetic polymeric scaffolds.

References:
Bhardwaj N, Kundu SC (2010): Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 28, 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
 
Gabet Y, Muller R, Regev E, Sela J, Shteyer A, Salisbury K, Chorev M, Bab I (2004): Osteogenic growth peptide modulates fracture callus structural and mechanical properties. Bone 35, 65–73. https://doi.org/10.1016/j.bone.2004.03.025
 
Gregor A, Filova E, Novak M, Kronek J, Chlup H, Buzgo M, Blahnova V, Lukasova V, Bartos M, Necas A, Hosek J (2017): Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3d printer. Journal of Biological Engineering 11, 31. https://doi.org/10.1186/s13036-017-0074-3
 
Gremare A, Guduric V, Bareille R, Heroguez V, Latour S, L’heureux N, Fricain JC, Catros S, Le Nihouannen D (2018): Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A 106, 887–894. https://doi.org/10.1002/jbm.a.36289
 
Haider A, Kim S, Huh MW, Kang IK (2015): BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth. BioMed Research International 2015. https://doi.org/10.1155/2015/281909
 
Heo SY, Kim HY, Kim NS (2017): Evaluation of Poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of critical-sized segmental bone defects in a canine model. Veterinarni Medicina 62, 325–332. https://doi.org/10.17221/283/2015-VETMED
 
Lao L, Wang Y, Zhu Y, Zhang Y, Gao C (2011): Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. Journal of Materials Science: Materials in Medicine 22, 1873–1884. https://doi.org/10.1007/s10856-011-4374-8
 
Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX (2015): Bone defect animal models for testing efficacy of bone substitute biomaterials. Journal of Orthopaedic Translation 3, 95–104. https://doi.org/10.1016/j.jot.2015.05.002
 
Lipner J, Liu W, Liu Y, Boyle J, Genin GM, Xia Y, Thomopoulos S (2014): The mechanics of plga nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair. Journal of the Mechanical Behavior Biomedical Materials 40, 59–68. https://doi.org/10.1016/j.jmbbm.2014.08.002
 
Makadia HK, Siegel SJ (2011): Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397. https://doi.org/10.3390/polym3031377
 
Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A (2015): Nanomedicine applications in orthopedic medicine: State of the art. International Journal of Nanomedicine 10, 6039–6053.
 
Murugan R, Ramakrishna S (2005): Development of nanocomposites for bone grafting. Composites Science and Technology 65, 2385–2406. https://doi.org/10.1016/j.compscitech.2005.07.022
 
Odelius K, Hoglund A, Kumar S, Hakkarainen M, Ghosh AK, Bhatnagar N, Albertsson AC (2011): Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules 12, 1250–1258. https://doi.org/10.1021/bm1015464
 
Stachewicz U, Qiao T, Rawlinson SCF, Almeida FV, Li WQ, Cattell M, Barber AH (2015): 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomaterialia 27, 88–100. https://doi.org/10.1016/j.actbio.2015.09.003
 
Talbot M, Zdero R, Garneau D, Cole PA, Schemitsch EH (2008): Fixation of long bone segmental defects: A biomechanical study. Injury 39, 181–186. https://doi.org/10.1016/j.injury.2007.08.026
 
download PDF

© 2020 Czech Academy of Agricultural Sciences