Oral administration of heat killed Tsukamurella inchonensis enhances immune responses and intestinal function in mice

https://doi.org/10.17221/82/2016-VETMEDCitation:Nofouzi K., Aghapour M., Hamidian G., Katiraee F., Stanford J., Ripley P. (2016): Oral administration of heat killed Tsukamurella inchonensis enhances immune responses and intestinal function in mice. Veterinarni Medicina, 61: 681-688.
download PDF

We studied the effects of heat-killed Tsukamurella inchonensis on immune parameters and intestinal structure in mice. Mice were treated with three doses of bacteria (5 × 107, 1 × 108 and 2 × 108 CFU/mouse) consecutively for seven days. Body weight, delayed type hypersensitivity response, relative organ weight, and haemagglutination titres were studied in different groups of animals. Villus height, villus width, villus/crypt ratio, crypt depth and goblet cell and intestinal epithelial lymphocyte density in villi were also determined. There was no significant increase in liver, spleen and kidney weights at any dose. Chicken red blood cell was used as a model antigen in the humoral and cellular immune response tests and Tsukamurella inchonensis elicited a significant (< 0.05) increase in the delayed type hypersensitivity response at doses of 2 × 108 CFU/mouse. In the haemagglutination titres test, Tsukamurella inchonensis showed a modulatory effect at a dose of 2 × 108 CFU/mouse. There were clear increases in the height of villi and depth of crypts in all three treated groups, but no significant effects on villus/crypt ratio and villus width. Goblet cell density was increased significantly only in high dose-treated mice, while intestinal epithelial lymphocyte density was increased significantly in medium and high dose-treated mice. Overall, Tsukamurella inchonensis showed a stimulatory effect on immune functions and enhanced immune barrier function in the intestines of mice.

References:
Bafna AR, Mishra SH (2004): Immunomodulatory activity of methanol extracts of flower heads of Sphaeranthus indicus Linn. Ars Pharmaceutica 45, 281–291.
 
Biagi F, Luinetti O, Campanella J, Klersy C, Zambelli C, Villanacci V, Lanzini A, Corazza GR (2004): Intraepithelial lymphocytes in the villous tip: do they indicate potential coeliac disease? Journal of Clinical pathology 57, 835–839.
 
Bin-Hafeez Bilal, Haque Rizwanul, Parvez Suhel, Pandey Suwarna, Sayeed Iqbal, Raisuddin S (2003): Immunomodulatory effects of fenugreek (Trigonella foenum graecum L.) extract in mice. International Immunopharmacology, 3, 257-265  https://doi.org/10.1016/S1567-5769(02)00292-8
 
Cheroutre Hilde, Lambolez Florence, Mucida Daniel (): The light and dark sides of intestinal intraepithelial lymphocytes. Nature Reviews Immunology, 11, 445-456  https://doi.org/10.1038/nri3007
 
Davies A., Lopez-Briones S., Ong H., O'Neil-Marshall C., Lemonnier F. A., Nagaraju K., Metcalf E. S., Soloski M. J. (): Infection-Induced Expansion of a MHC Class Ib-Dependent Intestinal Intraepithelial    T Cell Subset. The Journal of Immunology, 172, 6828-6837  https://doi.org/10.4049/jimmunol.172.11.6828
 
Ferguson A., Murray D. (1971): Quantitation of intraepithelial lymphocytes in human jejunum. Gut, 12, 988-994  https://doi.org/10.1136/gut.12.12.988
 
Fioramonti J, Theodorou V, Bueno L (2003): Probiotics: what are they? What are their effects on gut physiology? Clinical Gastroenterology 17, 711–724.
 
Hershberg R, Blumberg RS (2005): The lymphocyte epithelial bacterial interface. In: Targan SR, Shanahan F, Karp LC (eds): Inflammatory Bowel Disease: From Bench to Bedside. Springer US, Boston. 121–146.
 
Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S (2001): Probiotics: effects on immunity. American Journal of Clinical Nutrition 73, 444S–450S.
 
Karthikumar S, Jegatheesan K, Thangaraja A, Banupriya K, Dhivya T, Malarvizhi JM (2011): Immunomodulatory activity of Eclipta prostrata in SRBC immunized mice. Journal of Pharmacognosy and Phytotherapy 3, 52–55.
 
Kato Yoshifumi, Yu Dahong, Schwartz Marshall Z (1999): Glucagonlike peptide-2 enhances small intestinal absorptive function and mucosal mass in vivo. Journal of Pediatric Surgery, 34, 18-21  https://doi.org/10.1016/S0022-3468(99)90221-X
 
Khailova L., Dvorak K., Arganbright K. M., Halpern M. D., Kinouchi T., Yajima M., Dvorak B. (): Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. AJP: Gastrointestinal and Liver Physiology, 297, G940-G949  https://doi.org/10.1152/ajpgi.00141.2009
 
Klingspor S., Martens H., Caushi D., Twardziok S., Aschenbach J. R., Lodemann U. (): Characterization of the effects of Enterococcus faecium on intestinal epithelial transport properties in piglets. Journal of Animal Science, 91, 1707-1718  https://doi.org/10.2527/jas.2012-5648
 
Li Z., Zhang C., Zhou Z., Zhang J., Zhang J., Tian Z. (): Small Intestinal Intraepithelial Lymphocytes Expressing CD8 and T Cell Receptor    Are Involved in Bacterial Clearance during Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 80, 565-574  https://doi.org/10.1128/IAI.05078-11
 
Li Hai, Limenitakis Julien P., Fuhrer Tobias, Geuking Markus B., Lawson Melissa A., Wyss Madeleine, Brugiroux Sandrine, Keller Irene, Macpherson Jamie A., Rupp Sandra, Stolp Bettina, Stein Jens V., Stecher Bärbel, Sauer Uwe, McCoy Kathy D., Macpherson Andrew J. (): The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications, 6, 8292-  https://doi.org/10.1038/ncomms9292
 
Mack D R (): Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut, 52, 827-833  https://doi.org/10.1136/gut.52.6.827
 
Madsen Karen, Cornish Anthony, Soper Paul, McKaigney Conor, Jijon Humberto, Yachimec Christine, Doyle Jason, Jewell Lawrence, De Simone Claudio (2001): Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology, 121, 580-591  https://doi.org/10.1053/gast.2001.27224
 
Mahadeva S, Wyatt JI, Howdle PD (2002): Is a raised intraepithelial lymphocyte count with normal duodenal villous architecture clinically relevant? Journal of Clinical Pathology 55, 424–428.
 
Memeo Lorenzo, Jhang Jeffrey, Hibshoosh Hanina, Green Peter H, Rotterdam Heidrun, Bhagat Govind (): Duodenal intraepithelial lymphocytosis with normal villous architecture: common occurrence in H. pylori gastritis. Modern Pathology, 18, 1134-1144  https://doi.org/10.1038/modpathol.3800404
 
Mino Mari, Lauwers Gregory Y. (2003): Role of Lymphocytic Immunophenotyping in the Diagnosis of Gluten-Sensitive Enteropathy With Preserved Villous Architecture. The American Journal of Surgical Pathology, 27, 1237-1242  https://doi.org/10.1097/00000478-200309000-00007
 
Nasseri-Moghaddam S, Mofid A, Nouraie M, Abedi B, Pourshams A, Malekzadeh R, Sotoudeh M (2008): The normal range of duodenal intraepithelial lymphocytes. Archive of Iranian Medicine 11, 136–142.
 
Ohland C. L., MacNaughton W. K. (): Probiotic bacteria and intestinal epithelial barrier function. AJP: Gastrointestinal and Liver Physiology, 298, G807-G819  https://doi.org/10.1152/ajpgi.00243.2009
 
Oliveira-Sequeira Teresa Cristina Goulart, David Érica Boarato, Ribeiro Cláudia, Guimarães Semíramis, Masseno Ana Paula Batista, Katagiri Satie, Sequeira Julio Lopes (2014): EFFECT OF Bifidobacterium animalis ON MICE INFECTED WITH Strongyloides venezuelensis. Revista do Instituto de Medicina Tropical de São Paulo, 56, 105-109  https://doi.org/10.1590/S0036-46652014000200003
 
Rieger J., Janczyk P., Hünigen H., Neumann K., Plendl J. (2015): Intraepithelial lymphocyte numbers and histomorphological parameters in the porcine gut after Enterococcus faecium NCIMB 10415 feeding in a Salmonella Typhimurium challenge. Veterinary Immunology and Immunopathology, 164, 40-50  https://doi.org/10.1016/j.vetimm.2014.12.013
 
Rook GAV, Stanford JL (1979): The relevance to protection of three forms of delayed skin-test response evoked by M. leprae and other mycobacteria in mice. Correlation with the classical work in the guinea-pig. Parasite Immunology 1, 111–123.
 
Sharififar F, Pournourmohammadi S, Arabnejad M, Rastegarianzadeh R, Ranjbaran O, Purhemmaty A (2009): Immunomodulatory activity of aqueous extract of Heracleum persicum Desf. in mice. Iranian Journal of Pharmacology Research 8, 287–292.
 
Stanford John, Stanford Cynthia (2012): Mycobacteria and their world. International Journal of Mycobacteriology, 1, 3-12  https://doi.org/10.1016/j.ijmyco.2012.01.001
 
Stanford John, Stanford Cynthia, Stansby Gerard, Bottasso Oscar, Bahr Georges, Grange John (2009): The Common Mycobacterial Antigens and their Importance in the Treatment of Disease. Current Pharmaceutical Design, 15, 1248-1260  https://doi.org/10.2174/138161209787846838
 
Stratiki Z., Costalos C., Sevastiadou S., Kastanidou O., Skouroliakou M., Giakoumatou A., Petrohilou V. (2007): The effect of a bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. Early Human Development, 83, 575-579  https://doi.org/10.1016/j.earlhumdev.2006.12.002
 
Swamy Mahima, Jamora Colin, Havran Wendy, Hayday Adrian (): Epithelial decision makers: in search of the 'epimmunome'. Nature Immunology, 11, 656-665  https://doi.org/10.1038/ni.1905
 
Tarrés María Cristina, Gayol María del Carmen, Picena Juan Carlos, Alet Nicolás, Bottasso Oscar, McIntyre Graham, Stanford Cynthia, Stanford John (2012): Beneficial effects of immunotherapy with extracts derived from Actinomycetales on rats with spontaneous obesity and diabetes. Immunotherapy, 4, 487-497  https://doi.org/10.2217/imt.12.37
 
Thangakrishnakumari S, Nishanthini A, Muthukumarasamy S, Mohan VR (2013): Immunomodulatory activity of ethanol extracts of Sarcostemma secamone (L.) bennet (Asclepiadaceae) in mice. Journal of Harmonized Research Pharmacy 2, 84–90.
 
van Wijk Femke, Cheroutre Hilde (2009): Intestinal T cells: Facing the mucosal immune dilemma with synergy and diversity. Seminars in Immunology, 21, 130-138  https://doi.org/10.1016/j.smim.2009.03.003
 
Vega-López M.A., Telemo E., Bailey M., Stevens K., Stokes C.R. (1993): Immune cell distribution in the small intestine of the pig: immunohistological evidence for an organized compartmentalization in the lamina propria. Veterinary Immunology and Immunopathology, 37, 49-60  https://doi.org/10.1016/0165-2427(93)90015-V
 
Veress B., Franzén L., Bodin L., Borch K. (2004): Duodenal intraepithelial lymphocyte‐count revisited. Scandinavian Journal of Gastroenterology, 39, 138-144  https://doi.org/10.1080/00365520310007675
 
Yang Haiying, Liu Aiping, Zhang Ming, Ibrahim Salam A., Pang Zhihua, Leng Xiaojing, Ren Fazheng (2009): Oral Administration of Live Bifidobacterium Substrains Isolated from Centenarians Enhances Intestinal Function in Mice. Current Microbiology, 59, 439-445  https://doi.org/10.1007/s00284-009-9457-0
 
Yu Linda Chia-Hui (2012): Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World Journal of Gastrointestinal Pathophysiology, 3, 27-  https://doi.org/10.4291/wjgp.v3.i1.27
 
download PDF

© 2020 Czech Academy of Agricultural Sciences