The influence of fentanyl injection followed by infusion on the intraocular pressure, pupil size and aqueous tear production in healthy non-painful dogs P., Nemeckova H., Mrazova M., Burova J., Novak L. (2019): The influence of fentanyl injection followed by infusion on the intraocular pressure, pupil size and aqueous tear production in healthy non-painful dogs. Veterinarni Medicina, 64: 448-455.
download PDF

The goal of the presented research was to assess the influence of continuously administered fentanyl on the intraocular pressure, pupil size and aqueous tear production in dogs. A prospective, randomised, double “blind” clinical study was performed. Twenty-five non-painful dogs, 13 breeds, a body weight of 10.0 ± 5.4 kg (mean ± SD) and age of 6.5 ± 3.3 years, 12 males and 13 females with no ocular abnormalities were randomly allocated into two groups receiving an intravenous injection of saline (SAL) 0.3 ml/kg followed by an infusion 2 ml/kg/h or an intravenous injection of fentanyl (FEN) 0.005 mg/kg (diluted in 0.3 ml/kg) followed by an infusion 0.005 mg/kg/h (diluted in 2 ml/kg/h). The intraocular pressure (IOP), pupil size (PS), pulse rate (PR), respiratory frequency (fR) and systolic and diastolic arterial pressures (SAP, DAP) were measured before (baseline) and at 2, 5, 10, 20 and 30 minutes after the premedication. The Schirmer Tear Test I (STT-I) was measured prior to and at 30 min after the premedication. The data were analysed by Bartlett’s, Anderson-Darling and Dunnett’s tests, the t-test and an analysis of variance (ANOVA) (P < 0.05). Relative to the baseline, in the fentanyl group, the PS was significantly decreased at all time points, the PR was significantly decreased at T30 and the fR was significantly decreased at T5, T10, T20 and T30. There were no other significant changes in the IOP, STT-I, SAP and DAP relative to the baseline. Compared to the control group, in the fentanyl group, the PS was significantly smaller at T2, T5, T10, T20 and T30, the PR was significantly lower at T2, T20 and T30 and the fR was significantly higher at T20. Within thirty minutes of a constant rate infusion of fentanyl in the healthy non-painful dogs, the intraocular pressure and aqueous tear production were not affected. However, the fentanyl significantly decreased pupil size. This fact should be considered, when planning analgesia where miosis is undesirable.

Almeida DE, Rezende ML, Nunes N, Laus JL (2004): Evaluation of intraocular pressure in association with cardiovascular parameters in normocapnic dogs anesthetized with sevoflurane and desflurane. Veterinary Ophthalmology 7, 265–269.
Arndt JO, Mikat M, Parasher C (1984): Fentanyl’s analgesic, respiratory, and cardiovascular actions in relation to dose and plasma concentration in unanesthetized dogs. Anesthesiology 61, 355–361.
Biricik HS, Ceylan C, Sakar M (2004): Effects of pethidine and fentanyl on tear production in dogs. Veterinary Record 155, 564–565.
Blaze C, Pine CG, Casey E, Pizzirani S (2009): The effect of intravenous hydromorphone, butorphanol, morphine, and buprenorphine on pupil size and intraocular pressure in normal dogs. Proceedings of 10th WCVA, AVA, Glasgow, 134.
Cunningham AJ, Barry P (1986): Intraocular pressure-physiology and implications for anaesthetic management. Canadian Anaesthetic Society Journal 33, 195−208.
Domi RQ (2010): A comparison of the effects of sufentanil and fentanyl on intraocular pressure changes due to easy and difficult tracheal intubations. Saudi Medical Journal 31, 29−31.
Duncalf D, Weitzner SW (1963): The influence of ventilation and hypercapnea on intraocular pressure during anesthesia. Anesthesia & Analgesia 42, 232–237.
Epstein ME (2015): Opioids. In: Gaynor JS, Muir WW III (eds): Handbook of Veterinary Pain Management. 3rd edn. Elsevier Mosby, St. Louis. 161–195 p.
Feldman MA (2015): Anesthesia for eye surgery. In: Miller RD (ed.): Anesthesia. 8th edn. Elsevier Saunders, Philadelphia. 2512–2525 p.
Fukuda K (2015): Opioid analgesics. In: Miller RD (ed.): Anesthesia. 8th edn. Elsevier Saunders, Philadelphia. 864–914 p.
Gelatt KN, MacKay EO (1998): Distribution of intraocular pressure in dogs. Veterinary Ophthalmology 1, 109–114.
Grimm KA, Tranquilli WJ, Gross DR, Sisson DD, Bulmer BJ, Benson GJ, Greene SA, Martin-Jimenez T (2005): Cardiopulmonary effects of fentanyl in conscious dogs and dogs sedated with a continuous rate infusion of medetomidine. American Journal of Veterinary Research 66, 1222–1226.
Guedes AGP (2012): Pain management: constant-rate infusion. NAVC Clinician’s Brief/March 2012, 29–33.
Jantzen JP (1988): Anaesthesia and intraocular pressure. Anaesthesia 37, 458–469.
Jollife C (2016): Ophthalmic surgery. In: Duke-Novakovski T, de Vries M, Seymour C (eds): BSAVA Manual of Canine and Feline Anaesthesia and Analgesia. 3rd edn. British Small Animal Veterinary Association, Gloucester. 258–271 p.
Laubie M, Schmitt H, Canellas J, Roquebert J, Demichel P (1974): Centrally mediated bradycardia and hypotension induced by narcotic analgesics: dextromoramide and fentanyl. European Journal of Pharmacology 28, 66–75.
Macri FJ (1961): Vascular pressure relationship and the intraocular pressure. Archives of Ophthalmology 65, 133−136.
Mrazova M, Rauser P, Burova J, Georgiou G, Fichtel T (2018): Influence of medetomidine, acepromazine, fentanyl or butorphanol on intraocular pressure and pupil size in healthy dogs. Veterinární Medicína 63, 413–419.
Ng HP, Chen FG, Yeong SM, Wong E, Chew P (2000): Effect of remifentanil compared with fentanyl on intraocular pressure after succinylcholine and tracheal intubation. British Journal of Anaesthesiology 85, 785–787.
Renwick P (2002): Glaucoma. In: Petersen-Jones S, Crispin S (eds): BSAVA Manual of Small Animal Ophthalmology. 2nd edn. Gloucester, British Small Animal Veterinary Association. 185–203 p.
Sano T, Nishimura R, Kanazawa H, Igarashi E, Nagata Y, Mochizuki M, Sasaki N (2006): Pharmacokinetics of fentanyl after single intravenous injection and constant rate infusion in dogs. Veterinary Anaesthesia and Analgesia 33, 266–273.
Sator-Katzenschlager SM, Oehmke MJ, Deusch E, Dolezal S, Heinze G, Wedrich A. (2004): Effects of remifentanil and fentanyl on intraocular pressure during the maintenance and recovery of anaesthesia in patients undergoing non-ophthalmic surgery. European Journal of Anaesthesiology 21, 95–100.
Sinclair M (2018): Pharmacologic and clinical application of opioid analgesics. In: Mathews KA, Sinclar M, Steele AM, Grubb T (eds): Analgesia and Anesthesia for the Ill or Injured Dog and Cat. 1st edn. Wiley Blackwell, Hoboken. 119–133 p.
Stirt JA, Chiu GJ (1990): Intraocular pressure during rapid sequence induction: use of moderate-dose sufentanil or fentanyl and vecuronium or atracurium. Anaesthesia and Intensive Care 18, 390–394.
Taylor NR, Zele AJ, Vingrys AJ, Stanley RG (2007): Variation in intraocular pressure following application of tropicamide in three different dog breeds. Veterinary Ophthalmology 10, 8–11.
Yaksh TL, Noueihed RY, Durant PA (1986): Studies of the pharmacology and pathology of intrathecally administered 4-anilinopiperidine analogues and morphine in the rat and cat. Anesthesiology 64, 54–66.
Zacny JP, Lichtor JL, Zaragoza JG, de Wit H (1992): Effects of fasting on responses to intravenous fentanyl in healthy volunteers. Journal of Substance Abuse 4, 197–207.
download PDF

© 2019 Czech Academy of Agricultural Sciences