The effects of long-term diabetes on the haematological and uterine indicators and their association with neonatal nephrogenesis counter-protected by camel milk: A time dependent study

https://doi.org/10.17221/97/2019-VETMEDCitation:Usman M., Qureshi A., Ali M., Umer Z., Ateeq M., Sarfraz A., Hussain M., Anjum F., Mahmood N., Fakhar e Adil M., Umer S., Zhu H. (2020): The effects of long-term diabetes on the haematological and uterine indicators and their association with neonatal nephrogenesis counter-protected by camel milk: A time dependent study. Veterinarni Medicina, 65: 25-35.
download PDF

The novelty of this project is to describe how chronic diabetes altered the haematological and uterine indicators in a time dependent-manner that were reversed by camel milk (CM) therapy in pregnant and non-pregnant rat models. Fifty-four female rats were divided into three groups: Placebo (N), diabetic control (DC) and diabetic treated (DT) with CM at 40 ml/kg/24 h for 90 days. A single intact male was introduced into every group for mating at day 60 of the experiment. The sample collection was undertaken at day 30 and 60 of the non-pregnant rats and at day 90 immediately after parturition for the pregnant rats. At every collection, the dam’s blood, as well as the uteri and neonatal kidneys were collected and subjected to a paraffin tissue preparation technique for a histological evaluation. The data revealed that at day 30, the uterine endo- and myometrium remained unaffected by diabetes, but at day 60, a significant reduction in the uterine indicators from diabetes was observed. However, the CM restored the uterine histology in the DT. At 90 day, chronic diabetes showed (P < 0.05) a harmful effect on the pregnant uterus which was reversed (P < 0.05) by the CM. The RBC (red blood cell) indices, platelets, and leucocyte counts were severely affected by the diabetes and protected by the CM at every point of collection. The kidney tissues of the neonate rats, delivered by the dams, in the DC presented a significant (P < 0.05) shrinkage in the cortex and glomeruli while the CM potentially reversed these changes. These results will help to understand the chronic diabetes effects on the uterus and neonate’s renal genesis, and the role of camel milk in the management of chronic pre-gestational diabetes.

References:
Aceti A, Santhakumaran S, Logan K M, Philipps L H, Prior E, Gale C, Modi N. The diabetic pregnancy and offspring blood pressure in childhood: A systematic review and meta-analysis. Diabetologia. 2012 Nov;55(11):3114-27. https://doi.org/10.1007/s00125-012-2689-8
 
Agrawal RP, Saran S, Sharma P, Gupta RP, Kochar DK, Sahani MS. Effect of camel milk on residual beta-cell function in recent onset type 1 diabetes. Diabetes Res Clin Pract. 2007 Sep;77(3):494-5. https://doi.org/10.1016/j.diabres.2007.01.012
 
Ali M, Qureshi A, Usman M, Kausar R, Atteq M. Comparative effect of camel milk and black seed oil in induced diabetic female. Pak Vet J. 2017 May;37(3):293-8.
 
Amaral S, Oliveira PJ, Ramalho-Santos J. Diabetes and the impairment of reproductive function: Possible role of mitochondria and reactive oxygen species. Curr Diabetes Rev. 2008 Feb;4(1):46-54. https://doi.org/10.2174/157339908783502398
 
Amri K, Freund N, Vilar J, Merlet-Benichou C, Lelievre-Pegorier M. Adverse effects of hyperglycemia on kidney development in rats in vivo and in vitro studies. Diabetes. 1999 Nov;48(11):2240-5. https://doi.org/10.2337/diabetes.48.11.2240
 
Ateeq MK, Qureshi AS, Usman M, Shahid RU, Khamas WA. Effect of orally administered camel milk in Alloxan® induced albino rats: Long term study on maternal uterus and neonates selected organs. Pak Vet J. 2019 Jan;39(1):81-5.  https://doi.org/10.29261/pakvetj/2018.114
 
Baragob AEA. Composition and hypoglycemic effect of camel milk in streptozotocin-induced diabetic rats. Biochem Biotechnol Res. 2015 May;3(2):38-42.
 
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec;414(6865):813-20. https://doi.org/10.1038/414813a
 
Codner E, Merino PM, Tena-Sempere M. Female reproduction and type 1 diabetes: From mechanisms to clinical findings. Hum Reprod Update. 2012 Sep-Oct;18(5):568-85. https://doi.org/10.1093/humupd/dms024
 
Favaro RR, Salgado RM, Raspantini PR, Fortes ZB, Zorn TMT. Effects of long-term diabetes on the structure and cell proliferation of the myometrium in the early pregnancy of mice. Int J Exp Pathol. 2010 Oct;91(5):426-35. https://doi.org/10.1111/j.1365-2613.2010.00718.x
 
Favaro RR, Salgado RM, Covarrubias AC, Bruni F, Lima C, Fortes ZB, Zorn TM. Long-term type 1 diabetes impairs decidualization and extracellular matrix remodeling during early embryonic development in mice. Placenta. 2013 Dec;34(12):1128-35. https://doi.org/10.1016/j.placenta.2013.09.012
 
Garcia-Vargas L, Addison SS, Nistala R, Kurukulasuriya D, Sowers JR. Gestational diabetes and the offspring: implications in the development of the cardiorenal metabolic syndrome in offspring. Cardiorenal Med. 2012 May;2(2):134-42.  https://doi.org/10.1159/000337734
 
Hafez MH, Gad SB. Zinc oxide nanoparticles effect on oxidative status, brain activity, anxiety-like behavior and memory in adult and aged male rats. Pak Vet J. 2018 Aug;38(3):311-5. https://doi.org/10.29261/pakvetj/2018.069
 
Iftikhar A, Aslam B, Muhammad F, Khaliq T. Polyherbal formulation ameliorates diabetes mellitus in alloxan-induced diabetic rats: Involvement of pancreatic genes expression. Pak Vet J. 2018 Mar;38(3):261-5.  https://doi.org/10.29261/pakvetj/2018.036
 
Jelkmann W. The role of the liver in the production of thrombopoietin compared with erythropoietin. Eur J Gastroenterol Hepatol. 2001 Jul;13(7):791-801. https://doi.org/10.1097/00042737-200107000-00006
 
Korish AA. The antidiabetic action of camel milk in experimental type 2 diabetes mellitus: an overview on the changes in incretin hormones, insulin resistance, and inflammatory cytokines. Horm Metab Res. 2014 Jun;46(6):404-11.  https://doi.org/10.1055/s-0034-1368711
 
Majeed W, Khaliq T, Aslam B, Khan JA. Polyherbal formulation prevents hyperglycemia by modulating the biochemical parameters and upregulating the insulin signaling cascade in alloxan induced hyperglycemic rats. Pak Vet J. 2018 Jan;38(2):121-6. https://doi.org/10.29261/pakvetj/2018.035
 
Malik A, Al-Senaidy A, Skrzypczak-Jankun E, Jankun J. A study of the anti-diabetic agents of camel milk. Int J Mol Med. 2012 Sep;30(3):585-92.  https://doi.org/10.3892/ijmm.2012.1051
 
Martins JO, Panicio MI, Dantas MP, Gomes GN. Effect of maternal diabetes on female offspring. Einstein (Sao Paulo). 2014 Oct-Dec;12(4):413-9.  https://doi.org/10.1590/S1679-45082014AO3200
 
McMurtrie EM, Ginsberg GG, Frederick, GT, Kirkland JL, Stancel GM, Gardner RM. Effect of a diabetic state on myometrial ultrastructure and isolated uterine contractions in the rat. Proc Soc Exp Biol Med. 1985 Dec;180(3):497-504. https://doi.org/10.3181/00379727-180-42208
 
Mirmiran P, Ejtahed HS, Angoorani P, Eslami F, Azizi F. Camel milk has beneficial effects on diabetes mellitus: A systematic review. Int J Endocrinol Metab. 2017 Apr; 15(2):e42150. https://doi.org/10.5812/ijem.42150
 
Mokhtare B, Cetin M, Saglam YS. Evaluation of histopathological and immunohistochemical effects of Metformin HCl-loaded beads formulations in Streptozotocin-Nicotinamide induced diabetic rats. Pak Vet J. 2018 Jul;38(2):127-32. https://doi.org/10.29261/pakvetj/2018.026
 
Mullaicharam AR. A review on medicinal properties of Camel milk. World J Pharm Sci. 2014 Jan;2(3):237-42.
 
Muzaffar H, Faisal MN, Khan JA, Aslam B. High protein diet improves biochemical and metabolic hormonal profile in Alloxan-induced diabetic rats. Pak Vet J. 2019 Jan;39(2):231-5. https://doi.org/10.29261/pakvetj/2019.016
 
Oyedemi OO, Adewusi EA, Aiyegoro OA, Akinpelu DA. Antidiabetic and haematological effect of aqueous extract of stem bark of Afzelia africana (Smith) on streptozotocin-induced diabetic Wistar rats. Asian Pac J Trop Biomed. 2011 Oct;1(5):353-8. https://doi.org/10.1016/S2221-1691(11)60079-8
 
Rahimi P, Kabiri N, Asgary S, Setorki M. Anti-diabetic effects of walnut oil on alloxan-induced diabetic rats. Afr J Pharm Pharmacol. 2011 Dec;5(24):2655-61.  https://doi.org/10.5897/AJPP11.480
 
Rukkayya YB, Ibrahim SG, Ladan MJ, Wasagu RSU, Jiya NM. Therapeutic effects of camel milk to sickle cell anaemia patient. Int Blood Res Rev. 2018 Feb;8(1):1-7. https://doi.org/10.9734/IBRR/2018/38776
 
Salgado JM, Mansi DN, Gagliardi A. Cissus sicyoides: Analysis of glycemic control in diabetic rats through biomarkers. J Med Food. 2009 Aug;12(4):722-7. https://doi.org/10.1089/jmf.2008.0157
 
Sinzato YK, Volpato GT, Iessi IL, Bueno A, Calderon IDMP, Rudge MVC, Damasceno DC. Neonatally induced mild diabetes in rats and its effect on maternal, placental, and fetal parameters. Exp Diabetes Res. 2012 Jun;2012(2):108163.  https://doi.org/10.1155/2012/108163
 
Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016 Mar-Apr;27(2):89-94. https://doi.org/10.5830/CVJA-2016-021
 
Tatewaki R, Otani H, Tanaka O, Kitada J. A morphological study on the reproductive organs as a possible cause of developmental abnormalities in diabetic NOD mice. Histol Histopathol. 1989 Jul;4(3):343-58.
 
Taylor R, Davison JM. Type 1 diabetes and pregnancy. BMJ. 2007 Apr;334(7596):742-5. https://doi.org/10.1136/bmj.39154.700417.BE
 
Usman M, Ali M, Qureshi A, Atteq M, Nisa FU. Short term effect of dose dependent camel milk in alloxan induced diabetes in female albino rats. J Anim Plant Sci. 2018 Oct;28(5):1292-300.
 
Yessoufou A, Moutairou K. Maternal diabetes in pregnancy: Early and long-term outcomes on the offspring and the concept of “metabolic memory”. Exp Diabetes Res. 2011 Nov; 2011(10):218598. https://doi.org/10.1155/2011/218598
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti