Use of natural substances for boar semen decontamination

https://doi.org/10.17221/8175-VETMEDCitation:Mazurova J., Kukla R., Rozkot M., Lustykova A., Slehova E., Sleha R., Lipensky J., Opletal L. (2015): Use of natural substances for boar semen decontamination. Veterinarni Medicina, 60: 235-247.
download PDF
The aim of this study was to investigate the antibacterial activity and toxicity for sperm cells of the natural substances gallic acid, methyl gallate, ethyl gallate, propyl gallate, octyl gallate, thymol, carvacrol and eugenol. The antibacterial activity of these natural substances and selected combinations of them against bacterial strains isolated from boar ejaculates was determined using the microdilution and macrodilution method in Mueller-Hinton broth. The most effective natural substances against Gram-negative and Gram-positive bacteria included in our study were thymol and carvacrol with minimum inhibitory concentration (MIC) values in the range of 300–600 µg/ml. Gallic acid exhibited the best antibacterial activity against Pseudomonas aeruginosa strains (MIC values of 300–2400 µg/ml), whereas the ranges of MIC values against Escherichia coli, Enterococcus faecalis and Staphylococcus sp. strains were higher. Octyl gallate exhibited stronger antibacterial activity against staphylococci and enterococci (MIC values of 18.8–75 µg/ml) than against Escherichia coli and Pseudomonas aeruginosa strains with MIC values in the ranges of 300–600 µg/mland 1200–2400 µg/ml, respectively. Thymol combined with carvacrol was the most effective combination against enterococci (MIC values of 75–300 : 150 thymol : carvacrol) and Pseudomonas aeruginosa (MIC values of 75–300 : 300 thymol : carvacrol), bacteria which are known to be frequently resistant to antimicrobials. Similar results were determined for the combination of carvacrol and eugenol against staphylococci and enterococci. The results of the combinations revealed more of an additive rather than a synergistic effect. Thymol and carvacrol were the most effective natural substances against the bacteria included in this study, with a low toxicity for sperm cells compared to other substances, suggesting their possible use for boar semen decontamination.
References:
Alma Mehmet Hakki, Mavi Ahmet, Yildirim Ali, Digrak Metin, Hirata Toshifumi (2003): Screening Chemical Composition and in Vitro Antioxidant and Antimicrobial Activities of the Essential Oils from Origanum syriacum L. Growing in Turkey. Biological & Pharmaceutical Bulletin, 26, 1725-1729  https://doi.org/10.1248/bpb.26.1725
 
Al-Zahrani SHM (2012): Antibacterial activities of gallic acid and gallic acid methyl ester on methicillin-resistant Staphylococcus aureus. Journal of American Science 8, 7–12.
 
Archana P. R., Nageshwar Rao B., Satish Rao B. S. (): Modulation of Gamma Ray-Induced Genotoxic Effect by Thymol, a Monoterpene Phenol Derivative of Cymene. Integrative Cancer Therapies, 10, 374-383  https://doi.org/10.1177/1534735410387421
 
Bassolé Imaël Henri Nestor, Juliani H. Rodolfo (2012): Essential Oils in Combination and Their Antimicrobial Properties. Molecules, 17, 3989-4006  https://doi.org/10.3390/molecules17043989
 
Bassolé Imaël Henri Nestor, Lamien-Meda Aline, Bayala Balé, Tirogo Souleymane, Franz Chlodwig, Novak Johannes, Nebié Roger Charles, Dicko Mamoudou Hama (2010): Composition and Antimicrobial Activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. Essential Oils and Their Major Monoterpene Alcohols Alone and in Combination. Molecules, 15, 7825-7839  https://doi.org/10.3390/molecules15117825
 
Bendahou M., Muselli A., Grignon-Dubois M., Benyoucef M., Desjobert Jean-Marie, Bernardini Antoine-François, Costa Jean (2008): Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: Comparison with hydrodistillation. Food Chemistry, 106, 132-139  https://doi.org/10.1016/j.foodchem.2007.05.050
 
Binutu Oluwatoyin A., Cordell Geoffrey A. (2000): Gallic Acid Derivatives From Mezoneuron Benthamianum Leaves. Pharmaceutical Biology, 38, 284-286  https://doi.org/10.1076/1388-0209(200009)3841-AFT284
 
Brewer M.S. (2011): Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 10, 221-247  https://doi.org/10.1111/j.1541-4337.2011.00156.x
 
Burt SA, Vlielander R, Haagsman HP, Veldhuizen EJA (2005): Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. Journal of Food Protection 68, 919–926.
 
Choi Jang-Gi, Kang Ok-Hwa, Lee Young-Seob, Oh You-Chang, Chae Hee-Sung, Jang Hye-Jin, Shin Dong-Won, Kwon Dong-Yeul (2009): Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria. Molecules, 14, 1773-1780  https://doi.org/10.3390/molecules14051773
 
Choi JG, Kang OH, Lee YS, Oh YC, Chae HS, Jang HJ, Kim JH, Sohn DH, Shin DW, Park H, Kwon DY (2008): In vitro activity of methyl gallate isolated from galla rhois alone and in combination with ciprofloxacin against clinical isolates of salmonella. Journal of Microbiology and Biotechnology 18, 1848–1852.
 
Chusri S., Voravuthikunchai S.P. (2011): Damage of staphylococcal cytoplasmic membrane by Quercus infectoria G. Olivier and its components. Letters in Applied Microbiology, 52, 565-572  https://doi.org/10.1111/j.1472-765X.2011.03041.x
 
Cosentino S., Tuberoso C. I. G., Pisano B., Satta M., Mascia V., Arzedi E., Palmas F. (1999): In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 29, 130-135  https://doi.org/10.1046/j.1472-765X.1999.00605.x
 
Cristani Mariateresa, D'Arrigo Manuela, Mandalari Giuseppina, Castelli Francesco, Sarpietro Maria Grazia, Micieli Dorotea, Venuti Vincenza, Bisignano Giuseppe, Saija Antonella, Trombetta Domenico (2007): Interaction of Four Monoterpenes Contained in Essential Oils with Model Membranes:  Implications for Their Antibacterial Activity. Journal of Agricultural and Food Chemistry, 55, 6300-6308  https://doi.org/10.1021/jf070094x
 
Daneshfar Ali, Ghaziaskar Hassan S., Homayoun Nasrolah (2008): Solubility of Gallic Acid in Methanol, Ethanol, Water, and Ethyl Acetate. Journal of Chemical & Engineering Data, 53, 776-778  https://doi.org/10.1021/je700633w
 
Darvishi Emad, Omidi Mansoor, Bushehri Ali Akbar, Golshani Ashkan, Smith Myron L. (2013): Thymol antifungal mode of action involves telomerase inhibition. Medical Mycology, 51, 826-834  https://doi.org/10.3109/13693786.2013.795664
 
Demirci B., Koşar M., Demirci F., Dinç M., Başer K.H.C. (2007): Antimicrobial and antioxidant activities of the essential oil of Chaerophyllum libanoticum Boiss. et Kotschy. Food Chemistry, 105, 1512-1517  https://doi.org/10.1016/j.foodchem.2007.05.036
 
Devi K. Pandima, Nisha S. Arif, Sakthivel R., Pandian S. Karutha (2010): Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130, 107-115  https://doi.org/10.1016/j.jep.2010.04.025
 
Didry N, Dubreuil L, Pinkas M (1993): Antibacterial activity of thymol, karvakrol and cinnamaldehyde alone or in combination. Die Pharmazie 48, 301–304.
 
Dorman H. J. D., Deans S. G. (2000): Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308-316  https://doi.org/10.1046/j.1365-2672.2000.00969.x
 
Elissondo M. Celina, Albani Clara M., Gende Liesel, Eguaras Martín, Denegri Guillermo (2008): Efficacy of thymol against Echinococcus granulosus protoscoleces. Parasitology International, 57, 185-190  https://doi.org/10.1016/j.parint.2007.12.005
 
FARAG R. S., DAW Z. Y., ABO-RAYA S. H. (1989): Influence of Some Spice Essential Oils on Aspergillus Parasiticus Growth and Production of Aflatoxins in a Synthetic Medium. Journal of Food Science, 54, 74-76  https://doi.org/10.1111/j.1365-2621.1989.tb08571.x
 
García-García Rebeca, López-Malo Aurelio, Palou Enrique (2011): Bactericidal Action of Binary and Ternary Mixtures of Carvacrol, Thymol, and Eugenol against Listeria innocua. Journal of Food Science, 76, M95-M100  https://doi.org/10.1111/j.1750-3841.2010.02005.x
 
Giweli Abdulhmid, Džamić Ana M., Soković Marina, Ristić Mihailo S., Marin Petar D. (2012): Antimicrobial and Antioxidant Activities of Essential Oils of Satureja thymbra Growing Wild in Libya. Molecules, 17, 4836-4850  https://doi.org/10.3390/molecules17054836
 
Gören * Ahmet C., Topçu Gülaçti, Bilsel Gökhan, Bilsel Mine, Wilkinson Jenny M., Cavanagh Heather M.A. (2004): Analysis of essential oil of Satureja thymbra by hydrodistillation, thermal desorber, and headspace GC/MS techniques and its antimicrobial activity. Natural Product Research, 18, 189-195  https://doi.org/10.1080/14786410310001608145
 
Guarda Abel, Rubilar Javiera F., Miltz Joseph, Galotto Maria Jose (2011): The antimicrobial activity of microencapsulated thymol and carvacrol. International Journal of Food Microbiology, 146, 144-150  https://doi.org/10.1016/j.ijfoodmicro.2011.02.011
 
Ha Tae Joung, Nihei Ken-ichi, Kubo Isao (2004): Lipoxygenase Inhibitory Activity of Octyl Gallate. Journal of Agricultural and Food Chemistry, 52, 3177-3181  https://doi.org/10.1021/jf034925k
 
Hammer Katherine A., Heel Kathryn A. (2012): Use of multiparameter flow cytometry to determine the effects of monoterpenoids and phenylpropanoids on membrane polarity and permeability in staphylococci and enterococci. International Journal of Antimicrobial Agents, 40, 239-245  https://doi.org/10.1016/j.ijantimicag.2012.05.015
 
Hanbali Fadwa E.L., Akssira Mohamed, Ezoubeiri Aicha, Gadhi Chems eddoha A., Mellouki Fouad, Benherraf Ahmed, Blazquez Amparo M., Boira Herminio (2005): Chemical composition and antibacterial activity of essential oil of Pulicaria odora L.. Journal of Ethnopharmacology, 99, 399-401  https://doi.org/10.1016/j.jep.2005.01.012
 
Helander Ilkka M., Alakomi Hanna-Leena, Latva-Kala Kyösti, Mattila-Sandholm Tiina, Pol Irene, Smid Eddy J., Gorris Leon G. M., von Wright Atte (1998): Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. Journal of Agricultural and Food Chemistry, 46, 3590-3595  https://doi.org/10.1021/jf980154m
 
HSU F, CHANG H, CHANG S (2007): Evaluation of antifungal properties of octyl gallate and its synergy with cinnamaldehyde. Bioresource Technology, 98, 734-738  https://doi.org/10.1016/j.biortech.2006.04.002
 
Hyldgaard Morten, Mygind Tina, Meyer Rikke Louise (2012): Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Frontiers in Microbiology, 3, -  https://doi.org/10.3389/fmicb.2012.00012
 
Ivanova Antoaneta, Delcheva Ivajla, Tsvetkova Iva, Kujumgiev Atanas, Kostova Ivanka (2002): GC-MS Analysis and Anti-Microbial Activity of Acidic Fractions Obtained from Paeonia peregrina and Paeonia tenuifolia Roots. Zeitschrift für Naturforschung C, 57, -  https://doi.org/10.1515/znc-2002-7-813
 
Jacobsen C., Hartvigsen Karsten, Lund P., Meyer Anne S., Adler-Nissen Jens, Holstborg Jens, Hølmer Gunhild (1999): Oxidation in fish-oil-enriched mayonnaise. European Food Research and Technology, 210, 13-30  https://doi.org/10.1007/s002170050526
 
Janssen A. M., Chin N. L. J., Scheffer J. J. C., Svendsen A. Baerheim (1986): Screening for antimicrobial activity of some essential oils by the agar overlay technique. Pharmaceutisch Weekblad Scientific Edition, 8, 289-292  https://doi.org/10.1007/BF02280052
 
Johnstone DB, Little JE (1953): Bacteriostatic, bactericidal, and drug resistance studies of ethyl gallate on Mycobacterium tuberculosis. Journal of Bacteriology 66, 320–323.
 
Joshi RK (2013): Chemical composition, In vitro antimicrobial and antioxidant activities of the essential oils of Ocimum gratissimum, O. sanctum and their major constituents. Indian Journal of Pharmaceutical Sciences, 75, 457-  https://doi.org/10.4103/0250-474X.119834
 
Kalemba D., Kunicka A. (2003): Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10, 813-829  https://doi.org/10.2174/0929867033457719
 
Kane Cynthia J. M., Menna Jay H., Sung Ching-Ching, Yeh Yun-Chi (1988): Methyl gallate, methyl-3,4,5-trihydroxybenzoate, is a potent and highly specific inhibitor of herpes simplex virusin vitro. II. Antiviral activity of methyl gallate and its derivatives. Bioscience Reports, 8, 95-102  https://doi.org/10.1007/BF01128976
 
Kang Mi-Sun, Oh Jong-Suk, Kang In-Chol, Hong Suk-Jin, Choi Choong-Ho (2008): Inhibitory effect of methyl gallate and gallic acid on oral bacteria. The Journal of Microbiology, 46, 744-750  https://doi.org/10.1007/s12275-008-0235-7
 
Kim T.J., Silva J.L., Jung Y.S. (2011): Enhanced functional properties of tannic acid after thermal hydrolysis. Food Chemistry, 126, 116-120  https://doi.org/10.1016/j.foodchem.2010.10.086
 
Kubo Isao, Fujita Ken-ichi, Nihei Ken-ichi (2002): Anti- Salmonella Activity of Alkyl Gallates . Journal of Agricultural and Food Chemistry, 50, 6692-6696  https://doi.org/10.1021/jf020467o
 
Kubo Isao, Fujita Ken-ichi, Nihei Ken-ichi, Nihei Atsuko (2004): Antibacterial Activity of Akyl Gallates against Bacillus subtilis. Journal of Agricultural and Food Chemistry, 52, 1072-1076  https://doi.org/10.1021/jf034774l
 
Kubo Isao, Masuoka Noriyoshi, Joung Ha Tae, Shimizu Kuniyoshi, Nihei Ken-ichi (2010): Multifunctional Antioxidant Activities of Alkyl Gallates. The Open Bioactive Compounds Journal, 3, 1-11  https://doi.org/10.2174/1874847301003010001
 
Kubo Isao, Xiao Ping, Fujita Ken'ichi (2001): Antifungal activity of octyl gallate: structural criteria and mode of action. Bioorganic & Medicinal Chemistry Letters, 11, 347-350  https://doi.org/10.1016/S0960-894X(00)00656-9
 
Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.-J.E. (2001): A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91, 453-462  https://doi.org/10.1046/j.1365-2672.2001.01428.x
 
Lee S P, Buber M T, Yang Q, Cerne R, Cortés R Y, Sprous D G, Bryant R W (2008): Thymol and related alkyl phenols activate the hTRPA1 channel. British Journal of Pharmacology, 153, 1739-1749  https://doi.org/10.1038/bjp.2008.85
 
Lu Li-Li, Lu Xiu-Yang (2007): Solubilities of Gallic Acid and Its Esters in Water. Journal of Chemical & Engineering Data, 52, 37-39  https://doi.org/10.1021/je0601661
 
Medina E, Brenes M, Garcia A, Romero C, De Castro A. (2009): Bactericidal activity of glutaraldehyde-like compounds from olive products. Journal of Food Protection, 72, 2611–2614.
 
Miller David J., Hawthorne Steven B. (2000): Solubility of Liquid Organic Flavor and Fragrance Compounds in Subcritical (Hot/Liquid) Water from 298 K to 473 K. Journal of Chemical & Engineering Data, 45, 315-318  https://doi.org/10.1021/je990278a
 
Nohynek Liisa J., Alakomi Hanna-Leena, Kähkönen Marja P, Heinonen Marina, Helander Ilkka M., Oksman-Caldentey Kirsi-Marja, Puupponen-Pimiä Riitta H. (2006): Berry Phenolics: Antimicrobial Properties and Mechanisms of Action Against Severe Human Pathogens. Nutrition and Cancer, 54, 18-32  https://doi.org/10.1207/s15327914nc5401_4
 
Ow Yin-Yin, Stupans Ieva (2003): Gallic Acid and Gallic Acid Derivatives: Effects on Drug Metabolizing Enzymes. Current Drug Metabolism, 4, 241-248  https://doi.org/10.2174/1389200033489479
 
Oyedemi SO, Okoh AI, Mabinya LV, Pirochenva G, Afolayan AJ (2009): The proposed mechanism of bactericidal action of eugenol, α-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. African Journal of Biotechnology 8, 1280–1286.
 
Özçelik Berrin, Kartal Murat, Orhan Ilkay (2011): Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 49, 396-402  https://doi.org/10.3109/13880209.2010.519390
 
Palaniappan Kavitha, Holley Richard A. (2010): Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International Journal of Food Microbiology, 140, 164-168  https://doi.org/10.1016/j.ijfoodmicro.2010.04.001
 
Perrin Christian, Meyer Liliane (2002): Quantification of synthetic phenolic antioxidants in dry foods by reversed-phase HPLC with photodiode array detection. Food Chemistry, 77, 93-100  https://doi.org/10.1016/S0308-8146(01)00373-9
 
Pereira Rangel Luciana, Fritzen Márcio, Yunes Rosendo Augusto, Leal Paulo César, Creczynski-Pasa Tânia Beatriz, Ferreira-Pereira Antônio (2010): Inhibitory effects of gallic acid ester derivatives on Saccharomyces cerevisiae multidrug resistance protein Pdr5p. FEMS Yeast Research, 10, 244-251  https://doi.org/10.1111/j.1567-1364.2009.00603.x
 
Rúa Javier, Fernández-Álvarez Laura, de Castro Cristina, del Valle Pilar, de Arriaga Dolores, García-Armesto María Rosario (2011): Antibacterial Activity Against Foodborne Staphylococcus aureus and Antioxidant Capacity of Various Pure Phenolic Compounds. Foodborne Pathogens and Disease, 8, 149-157  https://doi.org/10.1089/fpd.2010.0659
 
Sharma Om P., Bhat Tej K. (2009): DPPH antioxidant assay revisited. Food Chemistry, 113, 1202-1205  https://doi.org/10.1016/j.foodchem.2008.08.008
 
Shibata H., Kondo K., Katsuyama R., Kawazoe K., Sato Y., Murakami K., Takaishi Y., Arakaki N., Higuti T. (): Alkyl Gallates, Intensifiers of  -Lactam Susceptibility in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 49, 549-555  https://doi.org/10.1128/AAC.49.2.549-555.2005
 
Silva NCC, Fernandes Júnior A (2010): Biological properties of medicinal plants: a review of their antimicrobial activity. Journal of Venomous Animals and Toxins including Tropical Diseases, 16, 402-413  https://doi.org/10.1590/S1678-91992010000300006
 
Sisak F, Havlickova H, Hradecka H, Rychlik I, Kolackova I, Karpiskova R (2006): Antibiotic resistance of Salmonella spp. isolates from pigs in the Czech Republic. Veterinarni Medicina 51, 303–310.
 
Solórzano-Santos Fortino, Miranda-Novales Maria Guadalupe (2012): Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology, 23, 136-141  https://doi.org/10.1016/j.copbio.2011.08.005
 
Strlič Matija, Radovič Tanja, Kolar Jana, Pihlar Boris (2002): Anti- and Prooxidative Properties of Gallic Acid in Fenton-Type Systems. Journal of Agricultural and Food Chemistry, 50, 6313-6317  https://doi.org/10.1021/jf025636j
 
Takai E., Hirano A., Shiraki K. (): Effects of alkyl chain length of gallate on self-association and membrane binding. Journal of Biochemistry, 150, 165-171  https://doi.org/10.1093/jb/mvr048
 
Tippayatum P, Chonhenchob V (2007): Antibacterial activities of thymol, eugenol, and nisin against some food spoilage bacteria. Kasetsart Journal, Natural Science 41, 319–323.
 
Trombetta D., Castelli F., Sarpietro M. G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. (): Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrobial Agents and Chemotherapy, 49, 2474-2478  https://doi.org/10.1128/AAC.49.6.2474-2478.2005
 
Ultee A, Slump RA, Steging G, Smid EJ (2000): Antimicrobial activity of carvacrol towards Bacillus cereus on rice. Journal of Food Protection 63, 620–624.
 
Uozaki Misao, Yamasaki Hisashi, Katsuyama Yukiko, Higuchi Masanori, Higuti Tomihiko, Koyama A. Hajime (2007): Antiviral effect of octyl gallate against DNA and RNA viruses. Antiviral Research, 73, 85-91  https://doi.org/10.1016/j.antiviral.2006.07.010
 
Vardar-Ünlü Gülhan, Candan Ferda, Sökmen Atalay, Daferera Dimitra, Polissiou Moschos, Sökmen Münevver, Dönmez Erol, Tepe Bektaş (2003): Antimicrobial and Antioxidant Activity of the Essential Oil and Methanol Extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae). Journal of Agricultural and Food Chemistry, 51, 63-67  https://doi.org/10.1021/jf025753e
 
Veldhuizen Edwin J. A., Tjeerdsma-van Bokhoven Johanna L. M., Zweijtzer Cindy, Burt Sara A., Haagsman Henk P. (2006): Structural Requirements for the Antimicrobial Activity of Carvacrol. Journal of Agricultural and Food Chemistry, 54, 1874-1879  https://doi.org/10.1021/jf052564y
 
Vondruskova H, Slamova R, Trckova M, Zraly Z, Pavlik I (2010): Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Veterinarni Medicina 55, 199–224.
 
Walsh S.E., Maillard J.-Y., Russell A.D., Catrenich C.E., Charbonneau D.L., Bartolo R.G. (2003): Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. Journal of Applied Microbiology, 94, 240-247  https://doi.org/10.1046/j.1365-2672.2003.01825.x
 
Wattanasatcha Anna, Rengpipat Sirirat, Wanichwecharungruang Supason (2012): Thymol nanospheres as an effective anti-bacterial agent. International Journal of Pharmaceutics, 434, 360-365  https://doi.org/10.1016/j.ijpharm.2012.06.017
 
Xu J., Zhou F., Ji B.-P., Pei R.-S., Xu N. (2008): The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47, 174-179  https://doi.org/10.1111/j.1472-765X.2008.02407.x
 
Zarrini Gholamreza, Delgosha Zahra Bahari, Moghaddam Kamyar Mollazadeh, Shahverdi Ahmad Reza (2010): Post-antibacterial effect of thymol. Pharmaceutical Biology, 48, 633-636  https://doi.org/10.3109/13880200903229098
 
Zhou Ligang, Li Duan, Wang Jingguo, Liu Yuanshuai, Wu Jianyong (2007): Antibacterial phenolic compounds from the spines of Gleditsia sinensis Lam.. Natural Product Research, 21, 283-291  https://doi.org/10.1080/14786410701192637
 
download PDF

© 2019 Czech Academy of Agricultural Sciences