Evidence of Anaplasma spp. exposure in native Korean goats (Capra hircus coreanae)

https://doi.org/10.17221/8176-VETMEDCitation:Lee S., Jung B., Kwak D. (2015): Evidence of Anaplasma spp. exposure in native Korean goats (Capra hircus coreanae). Veterinarni Medicina, 60: 248-252.
download PDF
Anaplasmosis in animals is caused by Anaplasma spp. including A. phagocytophilum, A. marginale, A. centrale, A. ovis, and A. bovis, which are obligate intracellular rickettsial pathogens transmitted by ticks. Infection in animals is considered an important constraint on livestock production. In Korea, the prevalence of Anaplasma spp. has been investigated in several species, including cattle, dogs, and rodents, but there are no available data on anaplasmosis in goats. The purpose of this study was to investigate the presence of Anaplasma spp. in native Korean goats (Capra hircus coreanae) using a commercial competitive ELISA which specifically detects antibodies against A. marginale, A. centrale, and A. ovis. A total of 36 (6.6%) of 544 goat serum samples tested seropositive for Anaplasma spp. With regard to age, 4.9% (7/144), 9.5% (27/283), and 1.7% (2/117) of samples tested seropositive in the young (< 1 year), adult (≥ 1 year), and unknown age groups, respectively, with significant differences among groups (P < 0.05). The seroprevalence by region was 1.7% (2/121), 2.6% (2/77), and 9.2% (32/346) in the northern, central, and southern regions, respectively, with significant differences among regions (P < 0.05). With regard to the season of sample collection, 3.3% (4/122) and 7.6% (32/422) samples tested seropositive during the cold and warm seasons, respectively. To the best of our knowledge, this is the first known study reporting the seroprevalence of Anaplasma spp. in native Korean goats. Despite the relatively low prevalence of Anaplasma spp. in native Korean goats compared with that in animals from other countries, these results should not be disregarded because infection with Anaplasma spp. in animals has long been recognised, and the potential for horizontal transmission cannot be excluded.
References:
Chae Joon-Seok, Yu Do-Hyeon, Shringi Smriti, Klein Terry A., Kim Heung-Chul, Chong Sung-Tae, Lee In-Yong, Foley Janet (2008): Microbial pathogens in ticks, rodents and a shrew in northern Gyeonggi-do near the DMZ, Korea. Journal of Veterinary Science, 9, 285-  https://doi.org/10.4142/jvs.2008.9.3.285
 
de la Fuente José, Atkinson Mark W., Naranjo Victoria, Fernández de Mera Isabel G., Mangold Atilio J., Keating Kimberly A., Kocan Katherine M. (2007): Sequence analysis of the msp4 gene of Anaplasma ovis strains. Veterinary Microbiology, 119, 375-381  https://doi.org/10.1016/j.vetmic.2006.09.011
 
Derdáková Markéta, Štefančíková Astéria, Špitalská Eva, Tarageľová Veronika, Košťálová Tatiana, Hrkľová Gabriela, Kybicová Kateřina, Schánilec Pavel, Majláthová Viktória, Várady Marián, Peťko Branislav (2011): Emergence and genetic variability of Anaplasma species in small ruminants and ticks from Central Europe. Veterinary Microbiology, 153, 293-298  https://doi.org/10.1016/j.vetmic.2011.05.044
 
Goda ASA, Osman WA, Mona AM, Abou-Elnaga TR (2009): Seroprevalence of Anaplasma ovis antibodies in small ruminants by major surface protein 5 competitive inhibition enzyme-linked immunosorbent assay. Suez Canal Veterinary Medicine Journal 1, 287–297.
 
Hornok Sándor, Elek Vilmos, de la Fuente José, Naranjo Victoria, Farkas Róbert, Majoros Gábor, Földvári Gábor (2007): First serological and molecular evidence on the endemicity of Anaplasma ovis and A. marginale in Hungary. Veterinary Microbiology, 122, 316-322  https://doi.org/10.1016/j.vetmic.2007.01.024
 
Jung B. Y., Gebeyehu E. B., Seo M. G., Byun J. W., Kim H. Y., Kwak D. (): Prevalence of vector-borne diseases in shelter dogs in Korea. Veterinary Record, 171, 249-249  https://doi.org/10.1136/vr.100650
 
Jung Byeong Yeal, Gebeyehu Eyerusalem Bizuneh, Lee Seung-Hun, Seo Min-Goo, Byun Jae-Won, Oem Jae Ku, Kim Ha-Young, Kwak Dongmi (2014): Detection and Determination of Toxoplasma gondii Seroprevalence in Native Korean Goats ( Capra hircus coreanae ). Vector-Borne and Zoonotic Diseases, 14, 374-377  https://doi.org/10.1089/vbz.2013.1452
 
Kang Seung Won, Doan Huong Thi Thanh, Choe Se Eun, Noh Jin Hyeong, Yoo Mi Sun, Reddy Kondreddy Eswar, Kim Young Ha, Kweon Chang Hee, Jung Suk Chan, Chang Ki Yoon (2013): Molecular investigation of tick-borne pathogens in ticks from grazing cattle in Korea. Parasitology International, 62, 276-282  https://doi.org/10.1016/j.parint.2013.02.002
 
Kocan K. M., de la Fuente J., Guglielmone A. A., Melendez R. D. (2003): Antigens and Alternatives for Control of Anaplasma marginale Infection in Cattle. Clinical Microbiology Reviews, 16, 698-712  https://doi.org/10.1128/CMR.16.4.698-712.2003
 
Léger Elsa, Vourc’h Gwenaël, Vial Laurence, Chevillon Christine, McCoy Karen D. (2013): Changing distributions of ticks: causes and consequences. Experimental and Applied Acarology, 59, 219-244  https://doi.org/10.1007/s10493-012-9615-0
 
Ndung’u LW, Aquirre C, Rurangirwa FR, McElwain TF, McGuire TC, Knowles DP, Pamler GH (1995): Detection of Anaplasma ovis infection in goats by major surface protein 5 competitive inhibition enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 33, 675–679.
 
Rar Vera, Golovljova Irina (2011): Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infection, Genetics and Evolution, 11, 1842-1861  https://doi.org/10.1016/j.meegid.2011.09.019
 
Strik N. I., Alleman A. R., Barbet A. F., Sorenson H. L., Wamsley H. L., Gaschen F. P., Luckschander N., Wong S., Chu F., Foley J. E., Bjoersdorff A., Stuen S., Knowles D. P. (): Characterization of Anaplasma phagocytophilum Major Surface Protein 5 and the Extent of Its Cross-Reactivity with A. marginale. Clinical and Vaccine Immunology, 14, 262-268  https://doi.org/10.1128/CVI.00320-06
 
Tibbitts Todd, Goff Will, Foreyt William, Stiller David (1992): Susceptibility of Two Rocky Mountain Bighorn Sheep to Experimental Infection with Anaplasma ovis. Journal of Wildlife Diseases, 28, 125-129  https://doi.org/10.7589/0090-3558-28.1.125
 
Torina A., Alongi A., Naranjo V., Scimeca S., Nicosia S., Di Marco V., Caracappa S., Kocan K. M., de la Fuente J. (2008): Characterization of Anaplasma Infections in Sicily, Italy. Annals of the New York Academy of Sciences, 1149, 90-93  https://doi.org/10.1196/annals.1428.065
 
Toye Philip, Handel Ian, Gray Julia, Kiara Henry, Thumbi Samuel, Jennings Amy, van Wyk Ilana Conradie, Ndila Mary, Hanotte Olivier, Coetzer Koos, Woolhouse Mark, Bronsvoort Mark (2013): Maternal antibody uptake, duration and influence on survival and growth rate in a cohort of indigenous calves in a smallholder farming system in western Kenya. Veterinary Immunology and Immunopathology, 155, 129-134  https://doi.org/10.1016/j.vetimm.2013.06.003
 
Chae Joon-Seok, Yu Do-Hyeon, Shringi Smriti, Klein Terry A., Kim Heung-Chul, Chong Sung-Tae, Lee In-Yong, Foley Janet (2008): Microbial pathogens in ticks, rodents and a shrew in northern Gyeonggi-do near the DMZ, Korea. Journal of Veterinary Science, 9, 285-  https://doi.org/10.4142/jvs.2008.9.3.285
 
de la Fuente José, Atkinson Mark W., Naranjo Victoria, Fernández de Mera Isabel G., Mangold Atilio J., Keating Kimberly A., Kocan Katherine M. (2007): Sequence analysis of the msp4 gene of Anaplasma ovis strains. Veterinary Microbiology, 119, 375-381  https://doi.org/10.1016/j.vetmic.2006.09.011
 
Derdáková Markéta, Štefančíková Astéria, Špitalská Eva, Tarageľová Veronika, Košťálová Tatiana, Hrkľová Gabriela, Kybicová Kateřina, Schánilec Pavel, Majláthová Viktória, Várady Marián, Peťko Branislav (2011): Emergence and genetic variability of Anaplasma species in small ruminants and ticks from Central Europe. Veterinary Microbiology, 153, 293-298  https://doi.org/10.1016/j.vetmic.2011.05.044
 
Goda ASA, Osman WA, Mona AM, Abou-Elnaga TR (2009): Seroprevalence of Anaplasma ovis antibodies in small ruminants by major surface protein 5 competitive inhibition enzyme-linked immunosorbent assay. Suez Canal Veterinary Medicine Journal 1, 287–297.
 
Hornok Sándor, Elek Vilmos, de la Fuente José, Naranjo Victoria, Farkas Róbert, Majoros Gábor, Földvári Gábor (2007): First serological and molecular evidence on the endemicity of Anaplasma ovis and A. marginale in Hungary. Veterinary Microbiology, 122, 316-322  https://doi.org/10.1016/j.vetmic.2007.01.024
 
Jung B. Y., Gebeyehu E. B., Seo M. G., Byun J. W., Kim H. Y., Kwak D. (): Prevalence of vector-borne diseases in shelter dogs in Korea. Veterinary Record, 171, 249-249  https://doi.org/10.1136/vr.100650
 
Jung Byeong Yeal, Gebeyehu Eyerusalem Bizuneh, Lee Seung-Hun, Seo Min-Goo, Byun Jae-Won, Oem Jae Ku, Kim Ha-Young, Kwak Dongmi (2014): Detection and Determination of Toxoplasma gondii Seroprevalence in Native Korean Goats ( Capra hircus coreanae ). Vector-Borne and Zoonotic Diseases, 14, 374-377  https://doi.org/10.1089/vbz.2013.1452
 
Kang Seung Won, Doan Huong Thi Thanh, Choe Se Eun, Noh Jin Hyeong, Yoo Mi Sun, Reddy Kondreddy Eswar, Kim Young Ha, Kweon Chang Hee, Jung Suk Chan, Chang Ki Yoon (2013): Molecular investigation of tick-borne pathogens in ticks from grazing cattle in Korea. Parasitology International, 62, 276-282  https://doi.org/10.1016/j.parint.2013.02.002
 
Kocan K. M., de la Fuente J., Guglielmone A. A., Melendez R. D. (2003): Antigens and Alternatives for Control of Anaplasma marginale Infection in Cattle. Clinical Microbiology Reviews, 16, 698-712  https://doi.org/10.1128/CMR.16.4.698-712.2003
 
Léger Elsa, Vourc’h Gwenaël, Vial Laurence, Chevillon Christine, McCoy Karen D. (2013): Changing distributions of ticks: causes and consequences. Experimental and Applied Acarology, 59, 219-244  https://doi.org/10.1007/s10493-012-9615-0
 
Ndung’u LW, Aquirre C, Rurangirwa FR, McElwain TF, McGuire TC, Knowles DP, Pamler GH (1995): Detection of Anaplasma ovis infection in goats by major surface protein 5 competitive inhibition enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 33, 675–679.
 
Rar Vera, Golovljova Irina (2011): Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infection, Genetics and Evolution, 11, 1842-1861  https://doi.org/10.1016/j.meegid.2011.09.019
 
Strik N. I., Alleman A. R., Barbet A. F., Sorenson H. L., Wamsley H. L., Gaschen F. P., Luckschander N., Wong S., Chu F., Foley J. E., Bjoersdorff A., Stuen S., Knowles D. P. (): Characterization of Anaplasma phagocytophilum Major Surface Protein 5 and the Extent of Its Cross-Reactivity with A. marginale. Clinical and Vaccine Immunology, 14, 262-268  https://doi.org/10.1128/CVI.00320-06
 
Tibbitts Todd, Goff Will, Foreyt William, Stiller David (1992): Susceptibility of Two Rocky Mountain Bighorn Sheep to Experimental Infection with Anaplasma ovis. Journal of Wildlife Diseases, 28, 125-129  https://doi.org/10.7589/0090-3558-28.1.125
 
Torina A., Alongi A., Naranjo V., Scimeca S., Nicosia S., Di Marco V., Caracappa S., Kocan K. M., de la Fuente J. (2008): Characterization of Anaplasma Infections in Sicily, Italy. Annals of the New York Academy of Sciences, 1149, 90-93  https://doi.org/10.1196/annals.1428.065
 
Toye Philip, Handel Ian, Gray Julia, Kiara Henry, Thumbi Samuel, Jennings Amy, van Wyk Ilana Conradie, Ndila Mary, Hanotte Olivier, Coetzer Koos, Woolhouse Mark, Bronsvoort Mark (2013): Maternal antibody uptake, duration and influence on survival and growth rate in a cohort of indigenous calves in a smallholder farming system in western Kenya. Veterinary Immunology and Immunopathology, 155, 129-134  https://doi.org/10.1016/j.vetimm.2013.06.003
 
download PDF

© 2019 Czech Academy of Agricultural Sciences