Effects of a cypermethrin-based pesticide on early life stages of common carp (Cyprinus carpio L.)

https://doi.org/10.17221/8417-VETMEDCitation:Richterova Z., Machova J., Stara A., Tumova J., Velisek J., Sevcikova M., Svobodova Z. (2015): Effects of a cypermethrin-based pesticide on early life stages of common carp (Cyprinus carpio L.). Veterinarni Medicina, 60: 423-431.
download PDF
The aim of this study was to assess the effects of Cyperkill 25 EC (a.i. cypermethrin 250 g/l) on cumulative mortality, growth indices, and ontogenetic development of embryos and larvae of common carp (Cyprinus carpio L.). An early-life stage toxicity test was used. Liver, intestine, kidneys, and gills of surviving larvae were examined, and the activity of the detoxifying and antioxidative enzymes glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), as well as lipid peroxidation (TBARS) was determined. Eggs of common carp 24 h post-fertilisation were exposed for 35 days to Cyperkill 25 EC at concentrations of 7.2, 36, 72, 144, and 360 μg/l containing the active ingredient cypermethrin at concentrations of 1.8, 9, 18, 36, and 90 μg/l, respectively. All larvae exposed to concentrations higher than 144 μg/l showed signs of damage after five days and died in the next two days; at concentrations of 72 and 36 μg/l total mortality was observed several days after hatching. Larvae exposed to 7.2 μg/l survived to the end of the test but showed significantly lower growth (P < 0.01) and retarded ontogenetic development compared to controls. Examination of these larvae did not reveal histological changes. Activity of GST, GR, and GPx in the exposed group was significantly lower (P < 0.01), while CAT and TBARS did not show significant differences from controls. Exposure to Cyperkill 25 EC affected hatching and survival at tested concentrations above 7.2 μg/l. Alterations in oxidative stress parameters and retarded growth and ontogenetic development were evident at 7.2 μg/l.
References:
Aebi H (1984): Catalase in vitro. Methods in Enzymology 105, 121–126.
 
Aydın Rahmi, Köprücü Kenan, Dörücü Mustafa, Köprücü Sibel Şimşek, Pala Murat (2005): Acute Toxicity of Synthetic Pyrethroid Cypermethrin on the Common Carp (Cyprinus carpio L.) Embryos and Larvae. Aquaculture International, 13, 451-458  https://doi.org/10.1007/s10499-005-0615-5
 
Bradbury SP, Coats JR (1989a): Comparative toxicology of the pyrethroid insecticides. Reviews of Environmental Contamination and Toxicology 108, 133–177.
 
Bradbury SP, Coats JR (1989b): Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environmental Toxicology and Chemistry 8, 373–380.
 
Brown Dale G., Bodenstein Otelia F., Norton Scott J. (1973): New potent pyrethroid, bromethrin. Journal of Agricultural and Food Chemistry, 21, 767-769  https://doi.org/10.1021/jf60189a044
 
Burr S. A. (2004): Structure-Activity and Interaction Effects of 14 Different Pyrethroids on Voltage-Gated Chloride Ion Channels. Toxicological Sciences, 77, 341-346  https://doi.org/10.1093/toxsci/kfh027
 
Carlberg I, Mannervik B (1975): Purification and characterization of the flavoenzyme glutathione reductase from rat-liver. The Journal of Biological Chemistry 250, 5475–5480.
 
Crawford Maureen J., Croucher Andrew, Hutson David H. (1981): Metabolism of cis- and trans-cypermethrin in rats. Balance and tissue retention study. Journal of Agricultural and Food Chemistry, 29, 130-135  https://doi.org/10.1021/jf00103a033
 
DeMicco A., Cooper K. R., Richardson J. R., White L. A. (): Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos. Toxicological Sciences, 113, 177-186  https://doi.org/10.1093/toxsci/kfp258
 
El-Sayed Yasser Said, Saad Talaat Talaat (2008): Subacute Intoxication of a Deltamethrin-Based Preparation (Butox ® 5% EC) in Monosex Nile Tilapia, Oreochromis niloticus L.. Basic & Clinical Pharmacology & Toxicology, 102, 293-299  https://doi.org/10.1111/j.1742-7843.2007.00157.x
 
Flohe L, Gunzler WA (1984): Assays of glutathione peroxidase. Methods in Enzymology 105, 114–121.
 
Habig WH, Pabst MJ, Jakoby WB (1974): Glutathione S-transferases. First enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130–7139.
 
Hayes AW (ed.) (1994): Principles and Methods of Toxicology. 3rd ed. Raven Press, New York. 1468–1470.
 
Hill IR (1985): Effects on non target organisms in terrestrial and aquatic environments. In: Leahey JP (ed.): The Pyrethroid Insecticides. Taylor and Francis Group, London. 162–181.
 
Khan R. A. (2003): Stress-Related Bioindicator Anomalies in Feral Male Winter Flounder ( Pleuronectes americanus ) Exposed to Effluent from Two Pulp and Paper Mills in Newfoundland. Bulletin of Environmental Contamination and Toxicology, 70, 401-407  https://doi.org/10.1007/s00128-002-0205-4
 
Kocour Martin, Gela David, Rodina Marek, Linhart Otomar (2005): Testing of performance in common carp Cyprinus carpio L. under pond husbandry conditions I: top-crossing with Northern mirror carp. Aquaculture Research, 36, 1207-1215  https://doi.org/10.1111/j.1365-2109.2005.01340.x
 
Kocourek V, Hajslova J (1989): Methods for determination of contaminants in food. Laboratory Manual I (in Czech). Stredisko technickych informaci potravinarskeho prumyslu (ed.) Praha, Vyzkumny ustav potravinarskeho prumyslu Praha, Vyskumny ustav potravinarsky Bratislava, 9–15. ISBN 80-85120-00-3.
 
Köprücü Kenan, Aydın Rahmi (2004): The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pesticide Biochemistry and Physiology, 80, 47-53  https://doi.org/10.1016/j.pestbp.2004.05.004
 
Lushchak Volodymyr I. (2011): Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101, 13-30  https://doi.org/10.1016/j.aquatox.2010.10.006
 
Lushchak Volodymyr I., Bagnyukova Tetyana V., Lushchak Oleh V., Storey Janet M., Storey Kenneth B. (2005): Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. The International Journal of Biochemistry & Cell Biology, 37, 1319-1330  https://doi.org/10.1016/j.biocel.2005.01.006
 
Marigoudar SR, Ahmed RN, David M (2009): Cypermethrin induced respiratory and behavioural responses of the freshwater teleost, Labeo rohita (Hamilton). Veterinarski Arhiv 79, 583–590.
 
Narahashi T (1986): Nerve membrane ionic channels as the target of toxicants. Archives of Toxicology 59, 3–13.
 
OECD (2013): OECD Guideline for Testing of Chemicals no. 210. Fish, Early-life Stage Toxicity Test, 1–18.
 
Oruç Elif Özcan, Usta Demet (2007): Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology, 23, 48-55  https://doi.org/10.1016/j.etap.2006.06.005
 
Penaz M, Prokes M, Kouril J, Hamackova J (1983): Early development of the carp, Cyprinus carpio. Acta Scientiarum Naturalium Universita Brno 17, 1–39.
 
Richterova Z, Svobodova Z (2012): Pyrethroids influence on fish. Slovenian Veterinary Research 49, 63–72.
 
Richterová Zuzana, Máchová Jana, Stará Alžběta, Tumová Jitka, Velíšek Josef, Ševčíková Marie, Svobodová Zdeňka (2014): Effects of Cyhalothrin-Based Pesticide on Early Life Stages of Common Carp (Cyprinus carpio L.). BioMed Research International, 2014, 1-7  https://doi.org/10.1155/2014/107373
 
Sibley Paul K., Kaushik Narinder K. (1991): Toxicity of microencapsulated permethrin to selected nontarget aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 20, 168-176  https://doi.org/10.1007/BF01055901
 
Slaninova A, Smutna M, Modra H, Svobodova Z (2009): A review: Oxidative stress in fish induced by pesticides. Neuroendocrinology Letters 30, 2–12.
 
Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. (1985): Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76-85  https://doi.org/10.1016/0003-2697(85)90442-7
 
Smith TM, Stratton GE (1986): Effects of synthetic pyrethroid insecticides on nontarget organisms. Residue Reviews 97, 93–120.
 
Soderlund David M, Clark John M, Sheets Larry P, Mullin Linda S, Piccirillo Vincent J, Sargent Dana, Stevens James T, Weiner Myra L (2002): Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, 171, 3-59  https://doi.org/10.1016/S0300-483X(01)00569-8
 
Stara Alzbeta, Machova Jana, Velisek Josef (2012): Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environmental Toxicology and Pharmacology, 33, 334-343  https://doi.org/10.1016/j.etap.2011.12.019
 
Stara A, Steinbach Ch, Wlasow T, Gomulka P, Ziemok E, Machova J, Velisek J (2013a): Effects of zeta-cypermethrin on common carp (Cyprinus carpio L.). Neuroendocrinology Letters 34, 37–42.
 
Stara A, Kristan J, Zuskova E, Velisek J (2013b): Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Pesticide Biochemistry and Physiology 105, 18–23.
 
Treasurer James W, Wadsworth Simon L (2004): Interspecific comparison of experimental and natural routes of Lepeophtheirus salmonis and Caligus elongatus challenge and consequences for distribution of chalimus on salmonids and therapeutant screening. Aquaculture Research, 35, 773-783  https://doi.org/10.1111/j.1365-2109.2004.1100.x
 
Üner N., Oruç E. Özcan, Canli M., Sevgler Y. (): Effects of Cypermethrin on Antioxidant Enzyme Activities and Lipid Peroxidation in Liver and Kidney of the Freshwater Fish, and (L.). Bulletin of Environmental Contamination and Toxicology, 67, 0657-0664  https://doi.org/10.1007/s00128-001-0174-z
 
Üner Nevin, Oruç Elif Özcan, Sevgiler Yusuf, Şahin Nesli, Durmaz Hülya, Usta Demet (2006): Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environmental Toxicology and Pharmacology, 21, 241-245  https://doi.org/10.1016/j.etap.2005.08.007
 
Ural M. Şener, Sağlam Naim (2005): A study on the acute toxicity of pyrethroid deltamethrin on the fry rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Pesticide Biochemistry and Physiology, 83, 124-131  https://doi.org/10.1016/j.pestbp.2005.04.004
 
Velisek J, Wlasow T, Gomulka P, Svobodova Z, Dobsikova R, Novotny L, Dudzik M (2006): Effects of cypermethrin on rainbow trout (Oncorhynchus mykiss). Veterinarni Medicina 51, 469–476.
 
Velisek J, Svobodova Z, Machova J (2009a): Effects of bifenthrin on some haematological, biochemical and histopatological parameters of common carp (Cyprinus carpio L.). Fish Physiology and Biochemistry 35, 583–590.
 
Velisek J, Svobodova Z, Piackova V (2009b): Effects of acute exposure to bifenthrin on some haematological, biochemical and histopatological parameters of rainbow trout (Oncorhynchus mykiss). Veterinarni Medicina 54, 131–137.
 
Velisek J, Stara A, Svobodova Z (2011): The effects of pyrethroid and triazine pesticides on fish physiology. In: Stoytcheva M (ed.): Pesticides in the Modern World: Pests Control and Pesticides Exposure and Toxicity Assessment. InTech, Rijeka. ISBN 978-953-307-457-3. e377-402. http://www.intechopen.com/books/pesticides-in-the-modern-world-pests-controland-pesticides-exposure-and-toxicity-assessment/the-effects-of-pyrethroid-and-triazine-pesticides-on-fish-physiology
 
Werner I, Moran K (2008): Effects of pyrethroid insecticides on aquatic organisms. In: Gan J, Spurlock F, Hendley P, Weston DP (eds.): Synthetic Pyrethroids: Occurrence and Behavior in Aquatic Environments, ACS Symposium Series 991. Washington, DC. American Chemical Society 991, 310–335.
 
Yonar M. Enis (2013): Protective effect of lycopene on oxidative stress and antioxidant status in Cyprinus carpio during cypermethrin exposure. Environmental Toxicology, 28, 609-616  https://doi.org/10.1002/tox.20757
 
download PDF

© 2019 Czech Academy of Agricultural Sciences